89 research outputs found
On quantum mean-field models and their quantum annealing
This paper deals with fully-connected mean-field models of quantum spins with
p-body ferromagnetic interactions and a transverse field. For p=2 this
corresponds to the quantum Curie-Weiss model (a special case of the
Lipkin-Meshkov-Glick model) which exhibits a second-order phase transition,
while for p>2 the transition is first order. We provide a refined analytical
description both of the static and of the dynamic properties of these models.
In particular we obtain analytically the exponential rate of decay of the gap
at the first-order transition. We also study the slow annealing from the pure
transverse field to the pure ferromagnet (and vice versa) and discuss the
effect of the first-order transition and of the spinodal limit of metastability
on the residual excitation energy, both for finite and exponentially divergent
annealing times. In the quantum computation perspective this quantity would
assess the efficiency of the quantum adiabatic procedure as an approximation
algorithm.Comment: 44 pages, 23 figure
The multi-peak adaptive landscape of crocodylomorph body size evolution
Background: Little is known about the long-term patterns of body size evolution in Crocodylomorpha, the > 200-million-year-old group that includes living crocodylians and their extinct relatives. Extant crocodylians are mostly large-bodied (3–7 m) predators. However, extinct crocodylomorphs exhibit a wider range of phenotypes, and many of the earliest taxa were much smaller (
Results: Crocodylomorphs reached an early peak in body size disparity during the Late Jurassic, and underwent an essentially continual decline since then. A multi-peak Ornstein-Uhlenbeck model outperforms all other evolutionary models fitted to our data (including both uniform and non-uniform), indicating that the macroevolutionary dynamics of crocodylomorph body size are better described within the concept of an adaptive landscape, with most body size variation emerging after shifts to new macroevolutionary regimes (analogous to adaptive zones). We did not find support for a consistent evolutionary trend towards larger sizes among lineages (i.e., Cope’s rule), or strong correlations of body size with climate. Instead, the intermediate to large body sizes of some crocodylomorphs are better explained by group-specific adaptations. In particular, the evolution of a more aquatic lifestyle (especially marine) correlates with increases in average body size, though not without exceptions.
Conclusions: Shifts between macroevolutionary regimes provide a better explanation of crocodylomorph body size evolution on large phylogenetic and temporal scales, suggesting a central role for lineage-specific adaptations rather than climatic forcing. Shifts leading to larger body sizes occurred in most aquatic and semi-aquatic groups. This, combined with extinctions of groups occupying smaller body size regimes (particularly during the Late Cretaceous and Cenozoic), gave rise to the upward-shifted body size distribution of extant crocodylomorphs compared to their smaller-bodied terrestrial ancestors.</p
Elevated extinction rates as a trigger for diversification rate shifts: early amniotes as a case study
Tree shape analyses are frequently used to infer the location of shifts in diversification rate within the Tree of Life. Many studies have supported a causal relationship between shifts and temporally coincident events such as the evolution of “key innovations”. However, the evidence for such relationships is circumstantial. We investigated patterns of diversification during the early evolution of Amniota from the Carboniferous to the Triassic, subjecting a new supertree to analyses of tree balance in order to infer the timing and location of diversification shifts. We investigated how uneven origination and extinction rates drive diversification shifts, and use two case studies (herbivory and an aquatic lifestyle) to examine whether shifts tend to be contemporaneous with evolutionary novelties. Shifts within amniotes tend to occur during periods of elevated extinction, with mass extinctions coinciding with numerous and larger shifts. Diversification shifts occurring in clades that possess evolutionary innovations do not coincide temporally with the appearance of those innovations, but are instead deferred to periods of high extinction rate. We suggest such innovations did not cause increases in the rate of cladogenesis, but allowed clades to survive extinction events. We highlight the importance of examining general patterns of diversification before interpreting specific shifts
A Ceratopsian Dinosaur from the Lower Cretaceous of Western North America, and the Biogeography of Neoceratopsia
Competing interests: Andrew A. Farke has read the journal's policy and the authors of this manuscript have the following competing interests: Andrew A. Farke is a volunteer section editor and academic editor for PLOS ONE. This does not alter the authors' adherence to PLOS ONE policies on sharing data and materials.Acknowledgments
It is a pleasure to offer our most heartfelt thanks to Scott K. Madsen, who found OMNH 34557 and prepared it with consummate skill. We are grateful to James Taylor, Jack Owen, the Keebler family, and the Montana Bureau of Land Management for access to outcrops of the Cloverly Formation. We thank Xu Xing (IVPP) and Hai-Lu You (formerly CAGS-IG) for facilitating access to specimens, Mark Loewen, Joseph Frederickson, Darren Naish, and Leonardo Maiorino for productive discussion and comments, and Roger Burkhalter for assistance in photography. Gary Wisser, from the scientific visualization center at Western University of Health Sciences, is gratefully acknowledged for the high resolution scan of the cranium. Reviews by Peter Makovicky, Hai-Lu You, and editor Peter Wilf improved the manuscript.Author Contributions
Conceived and designed the experiments: AAF WDM RLC. Performed the experiments: AAF WDM RLC. Analyzed the data: AAF WDM RLC MJW. Contributed reagents/materials/analysis tools: AAF WDM RLC MJW. Wrote the paper: AAF WDM RLC MJW.The fossil record for neoceratopsian (horned) dinosaurs in the Lower Cretaceous of North America primarily comprises isolated teeth and postcrania of limited taxonomic resolution, hampering previous efforts to reconstruct the early evolution of this group in North America. An associated cranium and lower jaw from the Cloverly Formation (?middle–late Albian, between 104 and 109 million years old) of southern Montana is designated as the holotype for Aquilops americanus gen. et sp. nov. Aquilops americanus is distinguished by several autapomorphies, including a strongly hooked rostral bone with a midline boss and an elongate and sharply pointed antorbital fossa. The skull in the only known specimen is comparatively small, measuring 84 mm between the tips of the rostral and jugal. The taxon is interpreted as a basal neoceratopsian closely related to Early Cretaceous Asian taxa, such as Liaoceratops and Auroraceratops. Biogeographically, A. americanus probably originated via a dispersal from Asia into North America; the exact route of this dispersal is ambiguous, although a Beringian rather than European route seems more likely in light of the absence of ceratopsians in the Early Cretaceous of Europe. Other amniote clades show similar biogeographic patterns, supporting an intercontinental migratory event between Asia and North America during the late Early Cretaceous. The temporal and geographic distribution of Upper Cretaceous neoceratopsians (leptoceratopsids and ceratopsoids) suggests at least intermittent connections between North America and Asia through the early Late Cretaceous, likely followed by an interval of isolation and finally reconnection during the latest Cretaceous.Funding was received from the National Science Foundation (DEB 9401094, 9870173, http://www.nsf.gov); National Geographic Society (5918-97, http://www.nationalgeographic.com/); and American Chemical Society (PRF #38572-AC8, http://www.acs.org). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Yeshttp://www.plosone.org/static/editorial#pee
dinosaur_timelist.txt
The time list data used to generate the three rates used in the cal3 function; in plain text format
dinosaur_timelist.txt
The time list data used to generate the three rates used in the cal3 function; in plain text format
3-Dimensional Fluid and White Matter Suppression Magnetic Resonance Imaging Sequence Accelerated With Compressed Sensing Improves Multiple Sclerosis Cervical Spinal Cord Lesion Detection Compared With Standard 2-Dimensional Imaging.
Fluid and white matter suppression (FLAWS) is a recently proposed magnetic resonance sequence derived from magnetization-prepared 2 rapid acquisition gradient-echo providing 2 coregistered datasets with white matter- and cerebrospinal fluid-suppressed signal, enabling synthetic imaging with amplified contrast. Although these features are high potential for brain multiple sclerosis (MS) imaging, spinal cord has never been evaluated with this sequence to date. The objective of this work was therefore to assess diagnostic performance and self-confidence provided by compressed-sensing (CS) 3-dimensional (3D) FLAWS for cervical MS lesion detection on a head scan that includes the cervical cord without changing standard procedures.
Prospective 3 T scans (MS first diagnosis or follow-up) acquired between 2019 and 2020 were retrospectively analyzed. All patients underwent 3D CS-FLAWS (duration: 5 minutes 40 seconds), axial T 2 turbo spin echo covering cervical spine from cervicomedullary junction to the same inferior level as FLAWS, and sagittal cervical T 2 /short tau inversion recovery imaging. Two readers performed a 2-stage double-blind reading, followed by consensus reading. Wilcoxon tests were used to compare the number of detected spinal cord lesions and the reader's diagnostic self-confidence when using FLAWS versus the reference 2D T 2 -weighted imaging.
Fifty-eight patients were included (mean age, 40 ± 13 years, 46 women, 7 ± 6 years mean disease duration). The CS-FLAWS detected significantly more lesions than the reference T 2 -weighted imaging (197 vs 152 detected lesions, P < 0.001), with a sensitivity of 98% (T 2 -weighted imaging sensitivity: 90%) after consensual reading. Considering the subgroup of patients who underwent sagittal T2 + short tau inversion recovery imaging (Magnetic Resonance Imaging for Multiple Sclerosis subgroup), +250% lesions were detected with FLAWS (63 vs 25 lesions detected, P < 0.001). Mean reading self-confidence was significantly better with CS-FLAWS (median, 5 [interquartile range, 1] [no doubt for diagnosis] vs 4 [interquartile range, 1] [high confidence]; P < 0.001).
Imaging with CS-FLAWS provides an improved cervical spinal cord exploration for MS with increased self-confidence compared with conventional T 2 -weighted imaging, in a clinically acceptable time
Accurate Diagnosis of Cortical and Infratentorial Lesions in Multiple Sclerosis Using Accelerated Fluid and White Matter Suppression Imaging.
The precise location of multiple sclerosis (MS) cortical lesions can be very challenging at 3 T, yet distinguishing them from subcortical lesions is essential for the diagnosis and prognosis of the disease. Compressed sensing-accelerated fluid and white matter suppression imaging (CS-FLAWS) is a new magnetic resonance imaging sequence derived from magnetization-prepared 2 rapid acquisition gradient echo with promising features for the detection and classification of MS lesions. The objective of this study was to compare the diagnostic performances of CS-FLAWS (evaluated imaging) and phase sensitive inversion recovery (PSIR; reference imaging) for classification of cortical lesions (primary objective) and infratentorial lesions (secondary objective) in MS, in combination with 3-dimensional (3D) double inversion recovery (DIR).
Prospective 3 T scans (MS first diagnosis or follow-up) acquired between March and August 2021 were retrospectively analyzed. All underwent 3D CS-FLAWS, axial 2D PSIR, and 3D DIR. Double-blinded reading sessions exclusively in axial plane and final consensual reading were performed to assess the number of cortical and infratentorial lesions. Wilcoxon test was used to compare the 2 imaging datasets (FLAWS + DIR and PSIR + DIR), and intraobserver and interobserver agreement was assessed using the intraclass correlation coefficient.
Forty-two patients were analyzed (38 with relapsing-remitting MS, 29 women, 42.7 ± 12.6 years old). Compressed sensing-accelerated FLAWS allowed the identification of 263 cortical lesions versus 251 with PSIR ( P = 0.74) and 123 infratentorial lesions versus 109 with PSIR ( P = 0.63), corresponding to a nonsignificant difference between the 2 sequences. Compressed sensing-accelerated FLAWS exhibited fewer false-negative findings than PSIR either for cortical lesions (1 vs 13; P < 0.01) or infratentorial lesions (1 vs 15; P < 0.01). No false-positive findings were found with any of the 2 sequences. Diagnostic confidence was high for each contrast.
Three-dimensional CS-FLAWS is as accurate as 2D PSIR imaging for classification of cortical and infratentorial MS lesions, with fewer false-negative findings, opening the way to a reliable full brain MS exploration in a clinically acceptable duration (5 minutes 15 seconds)
Recommended from our members
A Migration Model for the Polar Spiral Troughs of Mars
Mars' iconic polar spiral troughs are 400-1,000-m-deep depressions in the north polarlayered deposits. As the north polarlayered deposits accumulate, troughs migrate approximately poleward, anti-parallel to the local wind patterns. Insolation is suspected to drive ice retreat through sublimation. Sublimation at the trough wall produces a growing sublimation lag that modulates further retreat; however, winds move material off the retreating slope faces, thinning the lag. Discontinuities in stratigraphy seen by radar highlight Trough Migration Paths (TMPs), which provide a record of the troughs' position, formation, and evolution to the present day. We investigate two adjacent troughs presently near 87 degrees N to evaluate the mass balance conditions at those sites. We constrain the contribution of insolation-induced sublimation to the migration in the observed TMPs. We present a phenomenological model that combines our simulations of the sublimation conditions at paleo-trough surfaces with accumulation rates to create synthetic TMPs that are tunable to the observations. Models using nominal values of lag diffusivity, albedo, and atmospheric water vapor abundance and in which the trough walls have been covered in a lag on the order of millimeters thick and formed 2.3Myr ago match the observed trough migration and align with expectations of trough ages. Thicker lags, and/or older troughs, would generate TMPs of constant slope, which does not match the observed paths. We demonstrate the viability of our new theoretical model for predicting conditions that lead to trough migration, allowing us to connect observable TMPs to Martian climate processes. Plain Language Summary Mars' iconic polar spiral troughs are depressions in Mars' northern polar ice cap. The positions of these troughs have migrated poleward over time. Exposure to the Sun's radiation is suspected to drive retreat of the ice through sublimation (ice transitioning directly into vapor without a liquid phase). When ice sublimates, it leaves behind any dust that was within the ice, protecting the ice from further sublimation. Winds, however, have thinned this dust cover, allowing the troughs to continue migrating. Ice layering in subsurface radar data map out the migration paths of the troughs, which provide a record of the troughs' position from their formation to the present day. We investigate ice stability conditions at two adjacent troughs and present a new theoretical model for trough migration. We model sublimation of the trough walls and combine our simulations with previously proposed ice accumulation rates for Mars' north pole to create synthetic trough migration paths. In comparing our models to the observations of trough migration, we find that the trough walls have been covered in millimeters-thick dust over 2.3Myr, consistent with previously hypothesized ages. Our physical modeling approach allows us to connect the observable trough migration paths to Martian climate processes.NASA Earth and Space Sciences Fellowship (NESSF) [NNX16AP09H]6 month embargo; published online: 23 April 2019This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
- …