42 research outputs found

    FOSL1 Inhibits Type I Interferon Responses to Malaria and Viral Infections by Blocking TBK1 and TRAF3/TRIF Interactions

    Get PDF
    Innate immune response plays a critical role in controlling invading pathogens, but such an immune response must be tightly regulated. Insufficient or overactivated immune responses may lead to harmful or even fatal consequences. To dissect the complex host-parasite interactions and the molecular mechanisms underlying innate immune responses to infections, here we investigate the role of FOS-like antigen 1 (FOSL1) in regulating the host type I interferon (IFN-I) response to malaria parasite and viral infections. FOSL1 is known as a component of a transcription factor but was recently implicated in regulating the IFN-I response to malaria parasite infection. Here we show that FOSL1 can act as a negative regulator of IFN-I signaling. Upon stimulation with poly(I:C), malaria parasite-infected red blood cells (iRBCs), or vesicular stomatitis virus (VSV), FOSL1 “translocated” from the nucleus to the cytoplasm, where it inhibited the interactions between TNF receptor-associated factor 3 (TRAF3), TIR domain-containing adapter inducing IFN-β (TRIF), and Tank-binding kinase 1 (TBK1) via impairing K63-linked polyubiquitination of TRAF3 and TRIF. Importantly, FOSL1 knockout chimeric mice had lower levels of malaria parasitemia or VSV titers in peripheral blood and decreased mortality compared with wild-type (WT) mice. Thus, our findings have identified a new role for FOSL1 in negatively regulating the host IFN-I response to malaria and viral infections and have identified a potential drug target for controlling malaria and other diseases

    Whole Genome PCR Scanning Reveals the Syntenic Genome Structure of Toxigenic Vibrio cholerae Strains in the O1/O139 Population

    Get PDF
    Vibrio cholerae is commonly found in estuarine water systems. Toxigenic O1 and O139 V. cholerae strains have caused cholera epidemics and pandemics, whereas the nontoxigenic strains within these serogroups only occasionally lead to disease. To understand the differences in the genome and clonality between the toxigenic and nontoxigenic strains of V. cholerae serogroups O1 and O139, we employed a whole genome PCR scanning (WGPScanning) method, an rrn operon-mediated fragment rearrangement analysis and comparative genomic hybridization (CGH) to analyze the genome structure of different strains. WGPScanning in conjunction with CGH revealed that the genomic contents of the toxigenic strains were conservative, except for a few indels located mainly in mobile elements. Minor nucleotide variation in orthologous genes appeared to be the major difference between the toxigenic strains. rrn operon-mediated rearrangements were infrequent in El Tor toxigenic strains tested using I-CeuI digested pulsed-field gel electrophoresis (PFGE) analysis and PCR analysis based on flanking sequence of rrn operons. Using these methods, we found that the genomic structures of toxigenic El Tor and O139 strains were syntenic. The nontoxigenic strains exhibited more extensive sequence variations, but toxin coregulated pilus positive (TCP+) strains had a similar structure. TCP+ nontoxigenic strains could be subdivided into multiple lineages according to the TCP type, suggesting the existence of complex intermediates in the evolution of toxigenic strains. The data indicate that toxigenic O1 El Tor and O139 strains were derived from a single lineage of intermediates from complex clones in the environment. The nontoxigenic strains with non-El Tor type TCP may yet evolve into new epidemic clones after attaining toxigenic attributes

    High-field magnetic resonance imaging of the response of human prostate cancer to Pc 4-based photodynamic therapy in an animal model

    No full text
    INTRODUCTION: High-field magnetic resonance imaging (MRI) is an emerging technique that provides a powerful, non-invasive tool for in vivo studies of cancer therapy in animal models. Photodynamic therapy (PDT) is a relatively new treatment modality for prostate cancer, the second leading cause of cancer mortality in American males. The goal of this study was to evaluate the response of human prostate tumor cells growing as xenografts in athymic nude mice to Pc 4-sensitized PDT. MATERIALS AND METHODS: PC-3, a cell line derived from a human prostate malignant tumor, was injected intradermally on the back flanks of athymic nude mice. Two tumors were initiated on each mouse. One was treated and the other served as the control. A second-generation photosensitizing drug Pc 4 (0.6 mg/kg body weight) was delivered to each animal by tail vein injection 48 hours before laser illumination (672 nm, 100 mW/cm(2), 150 J/cm(2)). A dedicated high-field (9.4 T) small-animal MR scanner was used for image acquisitions. A multi-slice multi-echo (MSME) technique, permitting noninvasive in vivo assessment of potential therapeutic effects, was used to measure the T2 values and tumor volumes. Animals were scanned immediately before and after PDT and 24 hours after PDT. T2 values were computed and analyzed for the tumor regions. RESULTS: For the treated tumors, the T2 values significantly increased (P < 0.002) 24 hours after PDT (68.2 ± 8.5 milliseconds), compared to the pre-PDT values (55.8 ± 6.6 milliseconds). For the control tumors, there was no significant difference (P = 0.53) between the pre-PDT (52.5 ± 6.1 milliseconds) and 24-hour post-PDT (54.3 ± 6.4 milliseconds) values. Histologic analysis showed that PDT-treated tumors demonstrated necrosis and inflammation that was not seen in the control. DISCUSSION: Changes in tumor T2 values measured by multi-slice multi-echo MR imaging provide an assay that could be useful for clinical monitoring of photodynamic therapy of prostate tumors

    Registration of micro-PET and high-resolution MR images of mice for monitoring photodynamic therapy

    No full text
    We are investigating imaging techniques to study the rapid biochemical and physiological response of tumors to photodynamic therapy (PDT). Positron emission tomography (PET) can provide physiological and functional images of cancers. While MRI can provide high resolution anatomical images and generate serial, noninvasive, in vivo observations of morphological changes. In this study, we investigate image registration methods to combine MRI and micro-PET ( PET) images for improved tumor monitoring. We acquired high resolution MR and PET F-fluorodeoxyglucose (FDG) images from mice with RIF-1 tumors. We used rigid body registration with three translations and three angular variables. We used normalized mutual information as the similarity measure. To assess the quality of registration, we performed slice by slice review of both image volumes, manually segmented feature organs such as the left and right kidneys and the bladder in each slice, and computed the distance between corresponding centroids of the organs. We also used visual inspection techniques such as color overlay displays. Over 40 volume registration experiments were performed with MR and PET images acquired from three C3H mice. The color overlays showed that the MR images and the PET images matched well. The distance between corresponding centroids of organs was 1.5 ± 0.4 mm which is about 2 pixels of PET. In conclusion, registration of high resolution MR and PET images of mice may be useful to combine anatomical and functional information that could be used for the potential application in photodynamic therapy
    corecore