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Abstract
In this paper we study the long-time dynamics of the semilinear viscoelastic equation

utt –�utt –�u +
∫ ∞

0
μ(s)�u(t – s)ds + f (u) = h,

defined in a bounded domain of R3 with Dirichlet boundary condition. The functions
f = f (u) and h = h(x) represent forcing terms and the kernel functionμ ≥ 0 is assumed
to decay exponentially. Then, by exploring only the dissipation given by the memory
term, we establish the existence of a global attractor to the corresponding dynamical
system.
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1 Introduction
This is paper is concerned with the long-time behavior of a class of wave equations with
memory of the form

utt – �utt – �u +
∫ ∞


μ(s)�u(t – s) ds + f (u) = h in � ×R

+, (.)

u =  on � ×R
+, (.)

with initial conditions

u(x, ) = u(x), ut(x, ) = v(x), ∀x ∈ �,

u(x, –s) = ϕ(x, s), ∀(x, s) ∈ � ×R
+,

(.)

where � is a bounded domain in R
 with smooth boundary �, and ϕ is a prescribed past

history.
This problem is related to a model of extensional vibrations of thin rods

utt – �utt – �u = ,

described in Love [], Chapter , which is a conservative system. Here, we have added a
nonlinear forcing f (u) and a dissipation of memory type.
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We observe that such a system was extensively studied in the more general form

|ut|ρutt – �utt – �u +
∫ ∞


μ(s)�u(t – s) ds + f (u) = , (.)

with  ≤ ρ < . Most of results are concerned with the exponential stability of the system
under additional damping –�ut or ut . We refer the reader to, e.g., [–]. The existence of
global attractors to (.) was first proved in Araújo et al. [], with the assumption ρ > 
and with the additional damping –�ut . The assumption ρ >  was technical and related
to the uniqueness of the problem. Later, it was shown in [] that the strong damping –�ut

could be replaced by the weak damping ut , but yet with ρ > . On the other hand, in [],
the existence of a global attractor for the problem with ρ = μ =  was studied with a strong
damping.

More recently, it was proved by Conti et al. [] that existence and uniqueness for the
mixed problem (.) holds for ρ ≥  and without additional damping terms, that is, keep-
ing only the dissipation given by the memory. This means that the restriction ρ >  can be
dropped.

Motivated by results in [] and [], we propose to study the existence of global attractors
of (.) with ρ =  and exploring only the dissipation given by the memory term. That is,
we consider the problem (.)-(.). Then our result extends or complements the ones in
[–]. See Theorem ..

Of course, if the rotational inertia �utt is dropped, then equation (.) becomes the well-
known viscoelastic wave equation of memory type. On this matter, we refer the reader to
some relevant results in [–], among others.

2 History setting
We denote by (·, ·) and ‖ · ‖ is the standard inner product and norm on L(�). It is well
known that the operator A with domain D(A) defined by

A = –�, D(A) = H(�) ∩ H
(�),

is self-adjoint and strictly positive. See, e.g., []. We adopt the notation

H = L(�), H = H
(�) and H = H(�) ∩ H

(�).

Next we establish the history setting of the problem (.)-(.) in order to deal with the
non-autonomous character of the memory term in (.). We follow the arguments of [,
, ], based on []. Let μ : R+ → [,∞) be a summable function. We denote by M the
L-weighted space defined by

L
μ

(
R

+; H
)

=
{
η : R+ → H : ‖η‖M < ∞}

,

where ‖ · ‖M = (·, ·) 

M and (η, ξ )M =

∫ ∞
 μ(τ )(η(τ ), ξ (τ )) dτ . Similarly we define the space

M as

L
μ

(
R

+; H
)

=
{
η : R+ → H : ‖η‖M < ∞}

,
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where ‖ · ‖M = (·, ·) 

M

and (η, ξ )M =
∫ ∞

 μ(τ )(η(τ ), ξ (τ )) dτ . From classical theory, the
spaces M and M are separable Hilbert spaces.

Let T be the infinitesimal generator of the right-translation semigroup on M, that is,

Tη = –η′,

for all η ∈ D(T) = {η ∈M : η′ ∈M,η() = }, where η′(t) = ∂η

∂t in the sense of distributions
and η() = lims→ η(s). It is well known that

(Tη,η)M ≤ , ∀η ∈ D(T).

We also introduce the Hilbert space

H = H × H ×M,

endowed with the norms ‖ · ‖H = (·, ·) 

H where

(
(u, v,η), (u, v,η)

)
H = (u, u) + (v, v) + (η,η)M.

Then, as in [, ], we define

η = ηt(x, s) = u(x, t) – u(x, t – s), s ∈R
+.

Using this new variable η we can reformulate the system (.)-(.) to become

{
utt + Autt + Au –

∫ ∞
 μ(s)Aη(s) ds + f (u) = h,

ηt = Tη + ut ,
(.)

with initial conditions

u() = u, ut() = v, η(s) = η, (.)

where η(s) = u – ϕ(s) for all s ∈R
+.

The system (.)-(.) is a particular case of the system considered in []. There, the
authors established the well-posedness for a class of problems with |ut|ρutt instead of utt

as in (.). They proved, among other results, that the system (.)-(.) with initial data
z = (u, v,η) ∈H admits a unique weak solution

(u,η) ∈ W ,∞(, τ ; H) × C
(
[, τ ];M

)
,

satisfying the identity

(utt ,φ) + (utt ,φ) + (u,φ) +
∫ ∞


μ(s)

(
η(s),φ

)
 ds +

(
f (u),φ

)
= (h,φ), (.)

for every φ ∈ H and for a.e. t > . Here, η is a mild solution to the non-homogeneous
linear equation in the Hilbert space M,

d
dt

η = Tη + ut ,
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where τ is a positive real number arbitrarily fixed. In addition, it was shown in Estimate
(.) of [],

‖utt‖ ≤ C, a.e. t ∈ [, τ ], (.)

where C >  depends only on the initial data.
Now, due to the continuous dependence on initial data, the weak solution (u,η) of the

system (.)-(.), with initial data (u(), ut(),η) = z, can be rewritten in the form

S(t)z =
(
u(t), ut(t),ηt), (.)

generating a C-semigroup S(t) on H.
We end this section by recalling that a global attractor for a C-semigroup S(t) on H is a

compact subset A ⊂H which is strictly invariant, that is, S(t)A = A, ∀t ≥ , and uniformly
attracting, that is,

distH
(
S(t)B, A

)
= sup

x∈S(t)B
inf
y∈A

‖x – y‖H →  as t → ∞,

for any bounded set B ⊂H.

3 Global attractors
In this section we establish our main result. The assumptions we make in this paper are
as follows.

(H) Assume μ ∈ C(R+) ∩ L(R+) and satisfying the following conditions:
(i) μ(s) ≥  for all s ∈R

+;
(ii) there exists a positive constant k such that μ′(s) ≤ –kμ(s) for all s ∈R

+.
(H) The nonlinearity f ∈ C(R) and verifies the following conditions:

(i) |f (r) – f (s)| ≤ C( + |r|p + |s|p)|r – s| for all r, s ∈R, where  ≤ p < ;
(ii) there exists a positive constant ρ such that f (s)s – f̂ (s) ≥ –ρ , where

f̂ (s) =
∫ s

 f (τ ) dτ .
(H) The forcing h belongs to the dual space of H.

To simplify the notation we write ‖μ‖L(R+) = k in our estimates. We also observe that the
energy associated with the problem (.)-(.) is given by

E(t) =


‖ut‖ +



‖ut‖

 +


‖u‖

 +


‖η‖

M

+
∫

�

f̂ (u) dx –
∫

�

hu dx, t ≥ .

Our main result is the following.

Theorem . Suppose that the conditions (H)-(H) are verified. Then the dynamical sys-
tem (S(t),H) generated by the problem (.)-(.) has a global attractor.

The proof of this theorem will be completed at the end of this section.
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3.1 Abstract theory
Let us present a small collection of well-known results of from the theory of attractors.
This can be found in, e.g., [–]. A dynamical system (H, S(t)) is called dissipative if the
semigroup S(t) has an absorbing set, that is, a bounded set B ⊂H such that

S(t)B ⊂ B, ∀t ≥ tB,

for all bounded set B ⊂ H. A semigroup S(t) is asymptotically smooth in H if for any
bounded positive invariant set B ⊂H, that is, S(t)B ⊆ B for all t ≥ , there exists a compact
set K ⊂ B, such that

distH
(
S(t)B, K

) →  as t → ∞.

Then a classical result asserts that a dissipative C-semigroup S(t) defined on H has a
compact global attractor in H if and only if it is asymptotically smooth in H.

Now, it is well known from Proposition . in [] that a S(t) is asymptotically smooth
in H if for any positively invariant set B ⊂ H, and for any ε > , there exists T = T(ε, B)
such that

∥∥S(T)x – S(T)y
∥∥
H ≤ ε + φT (x, y), ∀x, y ∈ B, (.)

where φT : B × B → R satisfies

lim inf
n→∞ lim inf

m→∞ φT (zn, zm) = , (.)

for any sequence (zn) in B.

3.2 Dissipativeness
In this section we shall construct a bounded absorbing set to our system (H, S(t)) where
S(t) is the solution operator defined in (.). Let (u, ut ,η) be a weak solution of the system
(.)-(.). Since H is dense in H and u ∈ L∞(, τ ; H) we can assume that u is more
regular and obtain

‖u‖p+
Lp+ ≤ K�‖u‖p+

 ‖u‖,

where K� is an embedding constant. To simplify the notation denote all the embedding
constants by C�. Replacing φ by ut in (.) and adding the identity (ηt ,η) = (Tη,η)M +
(ut ,η)M we get

d
dt

E(t) = (Tη,η)M =



∫ ∞


μ′(s)

∥∥η(s)
∥∥

 ds ≤ .

We are going to apply the perturbed energy method. We consider the maps

(t) =
(
ut(t), u(t)

)
+

(
ut(t), u(t)

)
, �(t) =

(
ut(t),ηt)

M +
(
ut(t),ηt)

M
(.)
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and

Fε(t) = ε–E(t) + ε(t) – �(t), (.)

where  < ε ≤ . Then we have the following result.

Lemma . Let  , � and Fε be the maps defined in (.) and (.). Then
(a) there exist constants β = β(k,λ) ≥  and Cρ,λ,h,� ≥  such that

∣∣ε(t) – �(t)
∣∣ ≤ β

(
E(t) + Cρ,λ,h,�

)
;

(b) for every  < ε < β–, the positive constants β = ε– – β and β = ε– + β satisfy the
inequality

βE(t) –



Cρ,λ,h,� ≤ Fε(t) ≤ βE(t) +



Cρ,λ,h,�.

Proof By using Sobolev embeddings and condition (H) we have

∣∣∣∣–
∫

�

(
f̂ (u) – hu

)
dx

∣∣∣∣ =
∣∣∣∣–

∫
�

(
f̂ (u) – f (u)u + f (u)u – hu

)
dx

∣∣∣∣
≤

∣∣∣∣
∫

�

(
f̂ (u) – f (u)u

)
dx

∣∣∣∣ +
∣∣∣∣
∫

�

(
f (u)u – hu

)
dx

∣∣∣∣
≤ ρ|�| +

∫
�

∣∣(f (u)u – hu
)∣∣dx

≤ ρ|�| +
∫

�

(
 + |u|q)|u| dx + λ–

 ‖h‖ +



‖u‖



≤ ρ|�| + ‖u‖ + ‖u‖p+
p+ + λ–

 ‖h‖ +



‖u‖



≤ ρ|�| + K�‖u‖ + K�‖u‖ + λ–
 ‖h‖ +




‖u‖


≤ ρ|�| + (K�) +



‖u‖

 +



‖u‖



+ λ–
 ‖h‖ +




‖u‖
 , (.)

where |�| is the measure of �. Therefore, there is a positive constant Cρ,λ,h,� such that




‖u‖
 +

∫
�

(
f̂ (u) – hu

)
dx + Cρ,λ,h,� ≥ . (.)

Applying the inequality (.) we obtain

∣∣ε(t) – �(t)
∣∣ ≤ ε

∣∣(ut , u) + (ut , u)
∣∣ +

∣∣(ut ,η)M + (ut ,η)M

∣∣
≤ ε

(
λ–

 ‖ut‖ +


‖u‖



)
+ ε

(
‖ut‖

 +


‖u‖



)

+
(

k‖ut‖
 +




‖η‖
M

)
+

(
k‖ut‖ +




‖η‖
M

)



Feng et al. Boundary Value Problems  (2016) 2016:37 Page 7 of 13

=
(
k + λ–

 ε
)‖ut‖ + (k + ε)‖ut‖

 +
ε


‖u‖

 +


‖η‖

M

≤ (
k + λ–

 ε
)‖ut‖ + (k + ε)‖ut‖

 +
ε


‖u‖

 +


‖η‖

M

+
(




‖u‖
 +

∫
�

(
f̂ (u) – hu

)
dx + Cρ,λ,h,�

)

≤ β
(
E(t) + Cρ,λ,h,�

)
,

where β = sup<ε≤{, ε, (k + ε), (k + λ–
 ε)}, which ends the proof of (a). Now, let

 < ε < 
β

. By item (a) we obtain

∣∣Fε(t) – ε–E(t)
∣∣ =

∣∣ε(t) – �(t)
∣∣

≤ β
(
E(t) + Cρ,λ,h,�

)
,

which provides
(


ε

– β

)
E(t) –




Cρ,λ,h,� ≤ Fε(t) ≤
(


ε

+ β

)
E(t) +




Cρ,λ,h,�.

This proves (b). �

Lemma . There exists ε >  such that

F ′
ε(t) ≤ –εE(t) + Cε , ∀t ≥ ,∀ε ∈ (, ε).

Proof By (.) we get

 ′(t) = (utt , u) + (ut , ut) + (utt , u) + (ut , ut)

= ‖ut‖ + ‖ut‖
 – ‖u‖

 – (u,η)M –
(
f (u), u

)
+ (h, u)

≤ ‖ut‖ + ‖ut‖
 – ‖u‖

 – (u,η)M + ρ|�| +
(

–
∫

�

f̂ (u) dx + (h, u)
)

= ‖ut‖ + ‖ut‖
 – ‖u‖

 – (u,η)M + ρ|�| – E(t) +


‖ut‖ +



‖ut‖



+


‖u‖

 +


‖η‖

M

≤ –E(t) +


‖ut‖ +



‖ut‖

 –


‖u‖

 +


‖η‖

M – (u,η)M + ρ|�|

≤ –E(t) +
(
 + λ–


)‖ut‖

 –


‖u‖

 +


‖η‖

M +



‖u‖
 + k‖η‖

M + ρ|�|

≤ –E(t) +
(
 + λ–


)‖ut‖

 –



‖u‖
 +

(



+ k

)
‖η‖

M + ρ|�|

and

–�′(t) = –(utt ,η)M – (ut ,ηt)M – (utt ,η)M – (ut ,ηt)M

= –(utt ,η)M – (utt ,η)M – ‖ut‖
M – (Tη, ut)M – ‖ut‖

M + (Tη, ut)M

= –‖ut‖
M – ‖ut‖

M – (Tη, ut)M – (Tη, ut)M + (u,η)M +
(
f (u),η

)
M



Feng et al. Boundary Value Problems  (2016) 2016:37 Page 8 of 13

– (h,η)M –
∫ ∞



∫ ∞


μ(s)μ(τ )

(
η(τ ),η(s)

)
 dτ ds

= –‖ut‖
M – ‖ut‖

M +
∫ ∞


μ′(s)(η, ut) ds +

∫ ∞


μ′(s)(η, ut) ds +

(
f (u),η

)
M

– (h,η)M –
∫ ∞



∫ ∞


μ(s)μ(τ )

(
η(τ ),η(s)

)
 dτ ds

≤ –‖ut‖
M – ‖ut‖

M – k(η, ut)M – k(η, ut)M +
(
f (u),η

)
M

– (h,η)M

–
∫ ∞



∫ ∞


μ(s)μ(τ )

(
η(τ ),η(s)

)
 dτ ds

≤ –


‖ut‖

M –


‖ut‖

M + k
 ‖η‖

M + k
 ‖η‖

M +
(
f (u),η

)
M

– (h,η)M

–
∫ ∞



∫ ∞


μ(s)μ(τ )

(
η(τ ),η(s)

)
 dτ ds

≤ –
k


(
 + λ–


)‖ut‖ + k


(
 + λ–


)‖η‖

M +
δ


‖u‖

 + Cδ‖η‖
M

+
λ–

 k


‖h‖ +



‖η‖

M,

where  < δ ≤  and Cδ is a positive constant that verifies the inequality

∣∣(f (u),η
)
M

∣∣ ≤
∫ ∞


μ(s)

∫
�

(
 + |u|p)|u||η|dx ds

≤
∫ ∞


μ(s)

∫
�

|u||η|dx ds +
∫ ∞


μ(s)

∫
�

|u|p+|η|dx ds

≤ λ–


∫ ∞


μ(s)‖u‖‖η‖ ds +

∫ ∞


μ(s)‖u‖p+

p+‖η‖p+ ds

≤ λ–


∫ ∞


μ(s)‖u‖‖η‖ ds + K�

∫ ∞


μ(s)‖u‖‖η‖ ds

≤ K�‖u‖

∫ ∞


μ(s)‖η‖ ds

≤ δ


‖u‖

 + Cδ‖η‖
M.

Now, for every  < ε < k
 , the above inequalities provide

F ′
ε(t) – ε–E′(t) = ε ′(t) – �′(t)

≤ (
 + λ–


)(

ε –
k



)
‖ut‖ – εE(t) +




(δ – ε)‖u‖
 + C̃ε,δ

≤ –εE(t) +



(δ – ε)‖u‖
 + C̃ε,δ ,

where C̃ε,δ is a positive constant. As E′(t) ≤  we can choose δ ≤ ε in the previous inequal-
ity to obtain

F ′
ε(t) ≤ –εE(t) + Cε ,

which ends the proof of the lemma. �
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Lemma . (Absorbing set) Let S(t) be the C-semigroup defined in (.). Then (H, S(t))
is a dissipative dynamical system.

Proof We shall prove that S(t) has a bounded absorbing set. Let ε = min{ 
β

, ε}. By item
(b) of Lemma . we have

βE(t) –



Cρ,λ,h,� ≤ Fε(t) ≤ βE(t) +



Cρ,λ,h,�, (.)

where β = ε– – β and β = ε– + β . Multiplying the inequality (.) for ε
β

we get

ε

β
Fε(t) ≤ εE(t) + aε , (.)

where aε = εβ–
 Cρ,λ,h,�. Now by Lemma . we have

F ′
ε(t) ≤ –εE(t) + Cε . (.)

Adding the inequalities (.) and (.) we obtain

F ′
ε(t) +

ε

β
Fε(t) ≤ bε , (.)

where bε = aε + Cε . By (.) we conclude that

Fε(t) ≤ (
Fε() – ε–bεβ

)
e– ε

β
t + ε–bεβ, for all t ≥ . (.)

But by inequality (.) we have Fε() ≤ βE() + ε–aεβ. Therefore, by inequality (.)
we get

Fε(t) ≤ (
βE() – ε–Cεβ

)
e– ε

β
t + ε–bεβ, for all t ≥ . (.)

Combining (.) and (.) we obtain

E(t) ≤ β

β

(
E() – ε–Cε

)
e– ε

β
t +

β

β
Cε +


β

Cρ,λ,h,�

≤ β

β
E()e– ε

β
t +

β

β
Cε +


β

Cρ,λ,h,�. (.)

By (.) we have

E(t) ≥ σ
∥∥(

u(t), ut(t),ηt)∥∥
H – Cρ,λ,h,�, for all t ≥ , (.)

where σ = min{, λ
 }. Combining (.) and (.) we get

∥∥(
u(t), ut(t),ηt)∥∥

H ≤ β

βσ
E()e– ε

β
t +

β

βσ
Cε +

(


βσ
+


σ

)
Cρ,λ,h,�. (.)

By inequality (.) the ball B(, R) ⊂H, where

R >

√
β

βσ
Cε +

(


βσ
+


σ

)
Cρ,λ,h,�,

is an absorbing set of the semigroup S(t). �
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3.3 Compactness
In this section we shall prove that the system (H, S(t)) is asymptotically smooth.

Lemma . (Stabilization inequality) Let B ⊂ H be a bounded invariant set and z =
(u, v,η), z̃ = (ũ, ṽ, η̃) two initial data in B. Then there exists ν >  such that

∥∥S(t)z – S(t)z̃
∥∥
H ≤ CBe–νt + CB

∫ t



(∥∥w(s)
∥∥

Lp+ +
∥∥wt(s)

∥∥
Lp+

)
ds, (.)

where (u,η), (ũ, η̃) are the corresponding weak solutions of (.)-(.), w = u – ũ, and CB is
a positive constant depending on B but not on t.

Proof Let us also write ξ = η – η̃. Then w is a weak solution of the system

{
wtt – �wtt – �w –

∫ ∞
 μ(s)�ξ (s) ds = f (u) – f (ũ),

ξt = Tξ + wt ,
(.)

with Dirichlet boundary condition and initial data

w() = u – ũ, wt() = v – ṽ, ξ = η = η̃.

We define the energy functional

G(t) =


∥∥wt(t)

∥∥ +


∥∥wt(t)

∥∥
 +



∥∥w(t)

∥∥
 +



∥∥ξ t∥∥

M.

In the following, C will denote several positive constants dependent on B but not on t.

Claim  There exists a constant C >  such that

G′(t) ≤ 


∫ ∞


μ′(s)

∥∥ξ t(s)
∥∥

 ds + C
(∥∥w(t)

∥∥
Lp+ +

∥∥wt(t)
∥∥

Lp+
)
. (.)

To prove the claim, we multiply the first equation in (.) by wt and integrate over �.
Then we obtain

G′(t) =



∫ ∞


μ′(s)

∥∥ξ (s)
∥∥

 ds –
∫

�

(
f (u) – f (ũ)

)
wt dx.

Using (H) we have

∣∣∣∣
∫

�

(
f (u) – f (ũ)

)
wt dx

∣∣∣∣ ≤ Cf
(
 + ‖u‖p

Lp+ + ‖ũ‖p
Lp+

)‖w‖Lp+‖wt‖Lp+

≤ C
(∥∥w(t)

∥∥
Lp+ +

∥∥wt(t)
∥∥

Lp+
)
,

since B is bounded and invariant. Then we see that (.) holds.
Now, let us define the perturbed functional

J(t) = NG(t) + ε̃(t) + �̃(t),
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where

̃(t) =
(
w(t), wt(t)

)
+

(
w(t), wt(t)

)
, �̃(t) =

(
w(t), ξ t)

M +
(
w(t), ξ t)

M
,

and N ≥ ,  < ε <  are constants to be determined. Then the following claims can be
proved with similar arguments to the above one and to the proof of the absorbing set.

Claim  There exist constants β,β, Cβ >  such that, if N > Cβ ,

βG(t) ≤ J(t) ≤ βG(t), t ≥ . (.)

Claim  There exists a constant C >  such that

̃ ′(t) ≤ –G(t) –



∥∥w(t)
∥∥

 +


∥∥wt(t)

∥∥ +


∥∥wt(t)

∥∥


– C

∫ ∞


μ′(s)

∥∥ξ t(s)
∥∥

 ds + C
∥∥w(t)

∥∥
Lp+ . (.)

Claim  Given δ >  there exists a constant Cδ >  such that

�̃′(t) ≤ δ
∥∥w(t)

∥∥
 –

k


∥∥wt(t)

∥∥
 – Cδ

∫ t


μ′(s)

∥∥ξ t(s)
∥∥

 ds. (.)

Now, taking ε >  sufficiently small and N >  sufficiently large, we obtain from (.),
(.), and (.),

J ′(t) ≤ –εG(t) + C
(∥∥w(t)

∥∥
Lp+ +

∥∥wt(t)
∥∥

Lp+
)
, t ≥ .

Combining this with (.) we have, as in the proof of the absorbing set,

G(t) ≤ β

β
G()e– ε

β
t + C

∫ t


e– ε

β
(t–s)(∥∥w(s)

∥∥
Lp+ +

∥∥wt(s)
∥∥

Lp+
)

ds, ∀t ≥ .

This implies (.) by taking ν = ε/β and in view of the definition of G(t). �

Lemma . (Asymptotic smoothness) Let S(t) be the C-semigroup defined in (.). Then
the system (H, S(t)) is asymptotically smooth.

Proof We apply the compactness criterion presented in Proposition . of []. As re-
called in Section ., we must check conditions (.) and (.).

Given a forward invariant set B ⊂H and ε > , we can take T >  such that

√
CBe– ν

 T < ε.

Then from (.), using notation

S(t)zn =
(
un(t), un

t (t),ηt
n
)
,



Feng et al. Boundary Value Problems  (2016) 2016:37 Page 12 of 13

we obtain for any z, z ∈ B,

∥∥S(t)z – S(t)z∥∥
H ≤ ε +

(
CB

∫ T



∥∥u – u∥∥
Lp+ +

∥∥u
t – u

t
∥∥

Lp+ ds
) 



with  < t < T . Then defining

φT
(
z, z) =

√
CB

(∫ T



∥∥u(s) – u(s)
∥∥

Lp+ +
∥∥u

t (s) – u
t (s)

∥∥
Lp+ ds

) 


,

we see that condition (.) holds.
It remains to show that (.) also holds. Given any sequence (zn) ⊂ B, from the positive

invariance of B we see that S(t)zn = (un(t), un
t (t),ηt

n) is uniformly bounded in H. Then we
conclude that

un is bounded in L∞(, T , H),

un
t is bounded in L∞(

, T , L(�)
) ∩ L∞(, T , H),

and from (.),

un
tt is bounded in L(, T , L(�)

)
.

Then from Simon’s theorem [] we have

un, un
t converge strongly in C

(
[, T], Lp+(�)

)
,

since H is compactly embedded in Lp+(�). Therefore there is a subsequence such that

lim
k→∞

lim
l→∞

∫ T



∥∥unk (s) – unl (s)
∥∥

Lp+ +
∥∥unk

t (s) – unl
t (s)

∥∥
Lp+ ds = .

This shows that (.) also holds. �

Proof of Theorem . Since we have proved that (H, S(t)) is dissipative and asymptotically
smooth, the existence of a global attractor follows from a classical result, as noticed in
Section .. �
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