53 research outputs found

    Propofol cardioplegia: A single-center, placebo-controlled, randomized controlled trial

    Get PDF
    OBJECTIVES: Cardiac surgery with cardiopulmonary bypass and cardioplegic arrest is an effective treatment for coronary artery and aortic valve diseases. However, the myocardium sustains reperfusion injury after ischemic cardioplegic arrest. Our objective was to assess the benefits of supplementing cardioplegia solution with the general anesthetic propofol in patients undergoing either coronary artery bypass grafting (CABG) or aortic valve replacement (AVR). METHODS: A single-center, double-blind randomized controlled trial was carried out to compare cardioplegia solution supplemented with propofol (concentration 6 μg/mL) versus intralipid (placebo). The primary outcome was cardiac troponin T release over the first 48 hours after surgery. RESULTS: We recruited 101 participants (51 in the propofol group, 50 in the intralipid group); 61 underwent CABG and 40 underwent AVR. All participants were followed to 3 months. Cardiac troponin T release was on average 15% lower with propofol supplementation (geometric mean ratio, 0.85; 95% confidence interval [CI], 0.73-1.01; P = .051). There were no differences for CABG participants but propofol-supplemented participants undergoing AVR had poorer postoperative renal function (geometric mean ratio, 1.071; 95% CI, 1.019-1.125; P = .007), with a trend toward longer intensive care stay (median, 89.5 vs 47.0 hours; hazard ratio, 0.58; 95% CI, 0.31-1.09; P = .09) and fewer with perfect health (based on the EQ-5D health utility index) at 3 months (odds ratio, 0.26; 95% CI, 0.06-1.05; P = .058) compared with the intralipid group. Safety profiles were similar. There were no deaths. CONCLUSIONS: Propofol supplementation in cardioplegia appears to be cardioprotective. Its influence on early clinical outcomes may differ between CABG and AVR surgery. A larger, multicenter study is needed to confirm or refute these suggestions

    Developmental Exposure to a Toxic Spill Compromises Long-Term Reproductive Performance in a Wild, Long-Lived Bird: The White Stork (Ciconia ciconia)

    Get PDF
    Background/Objective: Exposure to environmental contaminants may result in reduced reproductive success and long- lasting population declines in vertebrates. Emerging data from laboratory studies on model species suggest that certain life- stages, such as development, should be of special concern. However, detailed investigations of long-term consequences of developmental exposure to environmental chemicals on breeding performance are currently lacking in wild populations of long-lived vertebrates. Here, we studied how the developmental exposure to a mine spill (Aznalco´ llar, SW Spain, April 1998) may affect fitness under natural conditions in a long-lived bird, the White Stork (Ciconia ciconia). Methodology: The reproductive performance of individually-banded storks that were or not developmentally exposed to the spill (i.e. hatched before or after the spill) was compared when these individuals were simultaneously breeding during the seven years after the spill occurred (1999–2005). Principal Findings: Female storks developmentally exposed to the spill experienced a premature breeding senescence compared with their non-developmentally exposed counterparts, doing so after departing from an unusually higher productivity in their early reproductive life (non-developmentally exposed females: 0.560.33SE fledglings/year at 3-yr old vs. 1.3860.31SE at 6–7 yr old; developmentally exposed females: 1.560.30SE fledglings/year at 3-yr old vs. 0.8660.25SE at 6– 7 yr old). Conclusions/Significance: Following life-history theory, we propose that costly sub-lethal effects reported in stork nestlings after low-level exposure to the spill-derived contaminants might play an important role in shaping this pattern of reproduction, with a clear potential impact on population dynamics. Overall, our study provides evidence that environmental disasters can have long-term, multigenerational consequences on wildlife, particularly when affecting developing individuals, and warns about the risk of widespread low-level contamination in realistic scenarios.Peer reviewe

    Algorithms for the diagnosis and treatment of restless legs syndrome in primary care

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Restless legs syndrome (RLS) is a neurological disorder with a lifetime prevalence of 3-10%. in European studies. However, the diagnosis of RLS in primary care remains low and mistreatment is common.</p> <p>Methods</p> <p>The current article reports on the considerations of RLS diagnosis and management that were made during a European Restless Legs Syndrome Study Group (EURLSSG)-sponsored task force consisting of experts and primary care practioners. The task force sought to develop a better understanding of barriers to diagnosis in primary care practice and overcome these barriers with diagnostic and treatment algorithms.</p> <p>Results</p> <p>The barriers to diagnosis identified by the task force include the presentation of symptoms, the language used to describe them, the actual term "restless legs syndrome" and difficulties in the differential diagnosis of RLS.</p> <p>Conclusion</p> <p>The EURLSSG task force reached a consensus and agreed on the diagnostic and treatment algorithms published here.</p

    Safety and immunogenicity of concomitant administration of COVID-19 vaccines (ChAdOx1 or BNT162b2) with seasonal influenza vaccines in adults in the UK (ComFluCOV): a multicentre, randomised, controlled, phase 4 trial

    Get PDF
    Background: Concomitant administration of COVID-19 and influenza vaccines could reduce burden on health-care systems. We aimed to assess the safety of concomitant administration of ChAdOx1 or BNT162b2 plus an age-appropriate influenza vaccine.Methods: In this multicentre, randomised, controlled, phase 4 trial, adults in receipt of a single dose of ChAdOx1 or BNT162b2 were enrolled at 12 UK sites and randomly assigned (1:1) to receive concomitant administration of either an age-appropriate influenza vaccine or placebo alongside their second dose of COVID-19 vaccine. 3 weeks later the group who received placebo received the influenza vaccine, and vice versa. Participants were followed up for 6 weeks. The influenza vaccines were three seasonal, inactivated vaccines (trivalent, MF59C adjuvanted or a cellular or recombinant quadrivalent vaccine). Participants and investigators were masked to the allocation. The primary endpoint was one or more participant-reported solicited systemic reactions in the 7 days after first trial vaccination(s), with a difference of less than 25% considered non-inferior. Analyses were done on an intention-to-treat basis. Local and unsolicited systemic reactions and humoral responses were also assessed. The trial is registered with ISRCTN, ISRCTN14391248.Findings: Between April 1 and June 26, 2021, 679 participants were recruited to one of six cohorts, as follows: 129 ChAdOx1 plus cellular quadrivalent influenza vaccine, 139 BNT162b2 plus cellular quadrivalent influenza vaccine, 146 ChAdOx1 plus MF59C adjuvanted, trivalent influenza vaccine, 79 BNT162b2 plus MF59C adjuvanted, trivalent influenza vaccine, 128 ChAdOx1 plus recombinant quadrivalent influenza vaccine, and 58 BNT162b2 plus recombinant quadrivalent influenza vaccine. 340 participants were assigned to concomitant administration of influenza and a second dose of COVID-19 vaccine at day 0 followed by placebo at day 21, and 339 participants were randomly assigned to concomitant administration of placebo and a second dose of COVID-19 vaccine at day 0 followed by influenza vaccine at day 21. Non-inferiority was indicated in four cohorts, as follows: ChAdOx1 plus cellular quadrivalent influenza vaccine (risk difference for influenza vaccine minus placebo –1·29%, 95% CI –14·7 to 12·1), BNT162b2 plus cellular quadrivalent influenza vaccine (6·17%, –6·27 to 18·6), BNT162b2 plus MF59C adjuvanted, trivalent influenza vaccine (–12·9%, –34·2 to 8·37), and ChAdOx1 plus recombinant quadrivalent influenza vaccine (2·53%, –13·3 to 18·3). In the other two cohorts, the upper limit of the 95% CI exceeded the 0·25 non-inferiority margin (ChAdOx1 plus MF59C adjuvanted, trivalent influenza vaccine 10·3%, –5·44 to 26·0; BNT162b2 plus recombinant quadrivalent influenza vaccine 6·75%, –11·8 to 25·3). Most systemic reactions to vaccination were mild or moderate. Rates of local and unsolicited systemic reactions were similar between the randomly assigned groups. One serious adverse event, hospitalisation with severe headache, was considered related to the trial intervention. Immune responses were not adversely affected.Interpretation: Concomitant vaccination with ChAdOx1 or BNT162b2 plus an age-appropriate influenza vaccine raises no safety concerns and preserves antibody responses to both vaccines. Concomitant vaccination with both COVID-19 and influenza vaccines over the next immunisation season should reduce the burden on health-care services for vaccine delivery, allowing for timely vaccine administration and protection from COVID-19 and influenza for those in need
    corecore