78 research outputs found

    A nanocomposite ultraviolet photodetector based on interfacial trap-controlled charge injection

    Get PDF
    Ultraviolet photodetectors have applications in fields such as medicine, communications and defence1, and are typically made from single-crystalline silicon, silicon carbide or gallium nitride p–n junction photodiodes. However, such inorganic photodetectors are unsuitable for certain applications because of their high cost and low responsivity (<0.2 A W−1)2. Solution-processed photodetectors based on organic materials and/or nanomaterials could be significantly cheaper to manufacture, but their performance so far has been limited2,3,4,5,6,7. Here, we show that a solution-processed ultraviolet photodetector with a nanocomposite active layer composed of ZnO nanoparticles blended with semiconducting polymers can significantly outperform inorganic photodetectors. As a result of interfacial trap-controlled charge injection, the photodetector transitions from a photodiode with a rectifying Schottky contact in the dark, to a photoconductor with an ohmic contact under illumination, and therefore combines the low dark current of a photodiode and the high responsivity of a photoconductor (∼721–1,001 A W−1). Under a bias of <10 V, our device provides a detectivity of 3.4 × 1015 Jones at 360 nm at room temperature, which is two to three orders of magnitude higher than that of existing inorganic semiconductor ultraviolet photodetectors

    Planning to Practice: Impacts of Large-Scale and Rapid Urban Afforestation on Greenspace Patterns in the Beijing Plain Area

    No full text
    (1) Research Highlights: Afforestation is one of the most effective urban greening practices for mitigating a variety of environmental issues. Globally, municipal governments have launched large-scale afforestation programs in metropolitan areas during the last decades. However, the spatiotemporal dynamics of urban greenspace patterns are seldom studied during such afforestation programs. (2) Background and Objectives: In this study, the Beijing Plain Afforestation Project (BPAP), which planted 70,711 ha of trees in only four years, was examined by integrating spatial and landscape analysis. To evaluate the real-world outcomes of this massive program, we investigated the spatial-temporal dynamics of landscape patterns during the implementation process to identify potential impacts and challenges for future management of new afforestation. (3) Materials and Methods: We analyzed the transition of various patch types and sizes, applied landscape indicators to measure the temporal changes in urban greenspace patterns, and used the landscape expansion index to quantify the rate and extent of greenspace spatial expansion. (4) Results: Our results illustrated that the implementation of afforestation in the Beijing plain area had generally achieved its initial goal of increasing the proportion of land devoted to forest (increased 8.43%) and parks (increased 0.23%). Afforestation also accelerated the conversion of small-size greenspaces to large-size patches. However, the significant discrepancies found between planned and actual afforestation sites, as well as the large conversion of cropland to forest, may present major challenges for project optimization and future management. (5) Conclusions: This study demonstrated that spatial analysis is a useful and potentially replicable method that can rapidly provide new data to support further afforestation ecosystem assessments and provide spatial insights into the optimization of large inner-city afforestation projects.Forestry, Faculty ofOther UBCNon UBCForest Resources Management, Department ofReviewedFacult

    Interactive Silhouette Rendering for Point-Based Models

    No full text
    We present a new method for rendering silhouettes of point-based models. Due to the lack of connectivity information, most existing polygon-based silhouette generation algorithms cannot be applied to point-based models. Our method not only bypasses this connectivity requirement, but also accommodates point-based models with sparse non-uniform sampling and inaccurate/no normal information. Like conventional point-based rendering, we render a model in two passes. The points are rendered as enlarged opaque disks in the first pass to obtain a visibility mask, while being rendered as regular size splats/disks in the second pass. In this way, edges are automatically depicted at depth discontinuities, usually at the silhouette boundaries. The silhouette color is the disk color used in the first pass rendering. The silhouette thickness can be controlled by changing the disk size difference between two passes. We demonstrate our method on different types of point-based models from various sources. The simplicity of our method allows it to be easily integrated with other rendering techniques to cater to many applications. Our method is capable of rendering large scenes of millions of points at interactive rates using modern graphics hardware. Categories and Subject Descriptors (according to ACM CCS): I.3.0 [Computer Graphics]: General 1
    corecore