49 research outputs found

    Quantum Multicriticality in Disordered Weyl Semimetal

    Full text link
    In electronic band structure of solid state material, two band touching points with linear dispersion appear in pair in the momentum space. When they annihilate with each other, the system undergoes a quantum phase transition from three-dimensional Weyl semimetal (WSM) phase to a band insulator phase such as Chern band insulator (CI) phase. The phase transition is described by a new critical theory with a `magnetic dipole' like object in the momentum space. In this paper, we reveal that the critical theory hosts a novel disorder-driven quantum multicritical point, which is encompassed by three quantum phases, renormalized WSM phase, CI phase, and diffusive metal (DM) phase. Based on the renormalization group argument, we first clarify scaling properties around the band touching points at the quantum multicritical point as well as all phase boundaries among these three phases. Based on numerical calculations of localization length, density of states and critical conductance distribution, we next prove that a localization-delocalization transition between the CI phase with a finite zero-energy density of states (zDOS) and DM phase belongs to an ordinary 3D unitary class. Meanwhile, a localization-delocalization transition between the Chern insulator phase with zero zDOS and a renormalized Weyl semimetal (WSM) phase turns out to be a direct phase transition whose critical exponent ν=0.80±0.01\nu=0.80\pm 0.01. We interpret these numerical results by a renormalization group analysis on the critical theory.Comment: 23 pages with 14 figures and 4 table

    Mechanical Characteristics of the Combination System of Medium-Diameter Anti-Slide Piles and Tunnel-Under-Landslide Loading

    No full text
    Landslides have significant impacts on the stress and deformation of existing tunnel that can damage the existing tunnel lining structures and thus affect normal traffic operation. It is of importance to study the mechanical mechanism of tunnel–landslide support systems. However, there are few studies on the mechanical mechanism of existing tunnels in landslide areas. The combination of medium-diameter anti-slide piles (300 mm ≤ D ≤ 800 mm) overcomes the disadvantages of the complex construction process and higher site requirements for large-diameter anti-slide piles (D > 800 mm) and the disadvantage of lower support with micro anti-slide piles (D < 300 mm). In this study, considering the influence of landslides on existing tunnel deformation, a new type of medium-diameter anti-slide pile reinforcement system for existing tunnels is proposed based on the Nanping Tunnel project. In order to study the influence of pile spacing on tunnel support, first, the maximum pile spacing of 12.5 d (25 cm) was calculated by the mathematical geometric method, and then, three physical models were established for experimental comparison and analysis, including three different spacing cases of 7.5 d (15 cm), 10 d (20 cm), and 12.5 d (25 cm). In addition, numerical simulation was used to analyze the landslide and tunnel deformation under three pile spacing working conditions. The following conclusions are reached: As the distance between the combined pile increased, the deformation of the pile body and the tunnel lining structure also increased gradually, and the earth pressure and bending moments acting on the tunnel and the pile body increased progressively. However, when the pile spacing was increased from 7.5 d to 10 d, the increase in tunnel bending moment (52.9% increase in tunnel lining moment) was much more significant than when the pile spacing was increased from 10 d to 12.5 d (28.1% increase in tunnel lining moment). The results showed that if the landslide thrust is small, the pile spacing can be increased to 12.5 d or more in the design of combined medium-diameter anti-slide piles; if the landslide thrust is large, the pile spacing should be reduced to 7.5 d or less. Whether the landslide’s thrust is large or small, the combined medium-diameter anti-slide piles with a 10 d pile spacing are less cost-effective for landslide control. The new combined medium-diameter anti-slide piles have high loading capacity and stability, which can further improve the strength of existing tunnels

    Tuning nanoscale heterogeneity by non-affine thermal strain to modulate defect activation and maximize magnetocaloric effect of metallic glass

    No full text
    The effects of non-affine thermal strain on the structure, defect activation and magnetocaloric effect (MCE) have been investigated in Gd55Co20Al24.5Si0.5 metallic glass (MG). Maxwell-Voigt models are utilized to analyze the impact of cryogenic thermal cycling (CTC) on the evolution of heterogeneous structure in term of the activated defects during creep deformation. Two kinds of flow defects with different relaxation times are observed from the relaxation spectrum, which show different responses to CTC. A power law between the maximum magnetic entropy change and its peak temperature is uncovered for Gd-based MGs above 85 K, which breaks down below 85 K for the low Gd content MGs including the high-entropy MGs. Through adjusting the CTC number, the maximum magnetic entropy of the present MG is improved to 10.7 JKg-1K−1 under 5 T, which is the largest among the Gd-based MGs with Curie temperature above 85 K. The enhancement of MCE is related to the increased fraction of solid-like zones in the amorphous matrix and nanocrystallization rendered by CTC treatment. This work sheds new insights into the correlation of MCE and nanoscale creep deformation with structural heterogeneity of MGs

    Mechanical Characteristics of the Combination System of Medium-Diameter Anti-Slide Piles and Tunnel-Under-Landslide Loading

    No full text
    Landslides have significant impacts on the stress and deformation of existing tunnel that can damage the existing tunnel lining structures and thus affect normal traffic operation. It is of importance to study the mechanical mechanism of tunnel–landslide support systems. However, there are few studies on the mechanical mechanism of existing tunnels in landslide areas. The combination of medium-diameter anti-slide piles (300 mm ≤ D ≤ 800 mm) overcomes the disadvantages of the complex construction process and higher site requirements for large-diameter anti-slide piles (D > 800 mm) and the disadvantage of lower support with micro anti-slide piles (D < 300 mm). In this study, considering the influence of landslides on existing tunnel deformation, a new type of medium-diameter anti-slide pile reinforcement system for existing tunnels is proposed based on the Nanping Tunnel project. In order to study the influence of pile spacing on tunnel support, first, the maximum pile spacing of 12.5 d (25 cm) was calculated by the mathematical geometric method, and then, three physical models were established for experimental comparison and analysis, including three different spacing cases of 7.5 d (15 cm), 10 d (20 cm), and 12.5 d (25 cm). In addition, numerical simulation was used to analyze the landslide and tunnel deformation under three pile spacing working conditions. The following conclusions are reached: As the distance between the combined pile increased, the deformation of the pile body and the tunnel lining structure also increased gradually, and the earth pressure and bending moments acting on the tunnel and the pile body increased progressively. However, when the pile spacing was increased from 7.5 d to 10 d, the increase in tunnel bending moment (52.9% increase in tunnel lining moment) was much more significant than when the pile spacing was increased from 10 d to 12.5 d (28.1% increase in tunnel lining moment). The results showed that if the landslide thrust is small, the pile spacing can be increased to 12.5 d or more in the design of combined medium-diameter anti-slide piles; if the landslide thrust is large, the pile spacing should be reduced to 7.5 d or less. Whether the landslide’s thrust is large or small, the combined medium-diameter anti-slide piles with a 10 d pile spacing are less cost-effective for landslide control. The new combined medium-diameter anti-slide piles have high loading capacity and stability, which can further improve the strength of existing tunnels

    Effect of Hot Filament Chemical Vapor Deposition Filament Distribution on Coated Tools Performance in Milling of Zirconia Ceramics

    No full text
    Zirconia ceramics (ZrO2) have been used for a variety of applications due to their superior physical properties, including in machining tools and dentures. Nonetheless, due to its extreme hardness and brittleness in both sintered and half-sintered forms, zirconia is difficult to machine. In this study, half-sintered zirconia blocks are milled with tungsten carbide milling tools which arecoated with diamond film using hot filament chemical vapor deposition (HFCVD) at various substrate-to-filament distances. The objective was to determine the effect of substrate-to-filament distances on the coating thickness, diamond purity, coating grain size, and ZrO2 machining performance during HFCVD. The experimental results show that, in HFCVD, the grain size and coating thickness of the diamond film on milling tools tend to decrease when the substrate-to-filament distances decrease. Tool failure happened at a cutting time of 200 min for all coated tools. However, the machining quality in terms of surface topology, surface roughness, and tool condition is superior for diamond-coated milling tools with smaller grain sizes and thinner thicknesses. It can be concluded that diamond milling tools with a smaller grain size and lesser thickness produced under shorter substrate-to-filament distances have a superior machining performance and a longer tool life. This study could potentially be used for parameter optimization in the production of coated tools

    CFD Simulation and Experiments of Pneumatic Centralized Cylinder Metering Device Cavity and Airflow Distributor

    No full text
    The distribution of airflow field in the pneumatic centralized cylinder metering device cavity, airstream distributor and different angle seed feeding tubes was investigated based on the pneumatic centralized cylinder direct-seeding metering device to study the effect on the movement law of rice seed. In total, three suction hole sizes (1.5 mm, 2 mm and 2.0 mm 45&deg; wedge) were used for CFD simulation. The results showed that under the same inlet vacuum, the pressure at the 1.5 mm hole is higher than the other two types of holes, and the five measurement points of the 2 mm hole are more stable than the other two types of holes. At the positive pressure seed feeding area, the inlet pressure was set as 1.5 kPa, and the outlet pressure was set as 0 Pa. The pressure distribution at different measuring points showed that the 2 mm 45&deg; wedge had the most uneven positive pressure distribution, and the 1.5 mm hole had higher positive pressure distribution than the 2 mm hole in general. Three different structured airflow distributors were designed. CFD simulation experiments showed that the arc transition type presented better uniformity than the other two types. The uniformity experiments at the ends of the seed-feeding tubes indicated that the airflow velocity had the trend of large in the middle and small at two sides. Finally, the movement law of the rice seeds in seed feeding tubes at different angles was obtained by using high-speed photography. The results showed that the rice seeds in tube C (maximum angle) presented a movement posture of falling sector a and kept falling after colliding in sector b; the rice seeds in tube B (the second angle) presented a movement posture of falling in sector a and kept falling after colliding in sector b. The above research provides a reference for the optimal design of a pneumatic centralized cylinder metering device
    corecore