79 research outputs found

    Gut brain interaction theory reveals gut microbiota mediated neurogenesis and traditional Chinese medicine research strategies

    Get PDF
    Adult neurogenesis is the process of differentiation of neural stem cells (NSCs) into neurons and glial cells in certain areas of the adult brain. Defects in neurogenesis can lead to neurodegenerative diseases, mental disorders, and other maladies. This process is directionally regulated by transcription factors, the Wnt and Notch pathway, the extracellular matrix, and various growth factors. External factors like stress, physical exercise, diet, medications, etc., affect neurogenesis and the gut microbiota. The gut microbiota may affect NSCs through vagal, immune and chemical pathways, and other pathways. Traditional Chinese medicine (TCM) has been proven to affect NSCs proliferation and differentiation and can regulate the abundance and metabolites produced by intestinal microorganisms. However, the underlying mechanisms by which these factors regulate neurogenesis through the gut microbiota are not fully understood. In this review, we describe the recent evidence on the role of the gut microbiota in neurogenesis. Moreover, we hypothesize on the characteristics of the microbiota-gut-brain axis based on bacterial phyla, including microbiota’s metabolites, and neuronal and immune pathways while providing an outlook on TCM’s potential effects on adult neurogenesis by regulating gut microbiota

    The Transition of Cultural Ecology in Beidong District of Guizhou – A Case Study of Tianzhu Community

    No full text
    Beidong minorities living together in Qingshui River valley are deeply influenced by Jing and Chu culture. Their ethnic and traditional culture was developed in the process of collision with foreign culture. In the several great social transformations, their cultural ecology was not imbalanced, but evolved and developed. Through the study on local knowledge of cultural ecology including agricultural production, ancestral hall and local-style dwelling house, full-scale drama and Yang Drama, genealogical system, marriage customs, religious belief, sacrificial rites and funeral rites, it is expected to reveal reasons and rules of transition of Beidong ethnic culture, favorable for correctly understanding cultural connotation and promote cultural and tourism development in ethnic minority areas

    A Novel MPC with Actuator Dynamic Compensation for the Marine Steam Turbine Rotational Control with a Novel Energy Dynamic Model

    No full text
    The conventional modeling method of the marine steam turbine rotational speed control system (MSTRSCS) is based on Newton’s second law, constructing the mechanical equations between the rotational acceleration and the resultant torque. The disadvantages of this are nonlinearity, a complex structure and an infinite point of discontinuity in the rotational acceleration when the rotational speed is close to 0. Taking the kinetic energy of MSTRSCS as the output variable by using the kinetic energy theorem in this paper, we convert the complex nonlinear model of MSTRSCS into a linear one, since kinetic energy and rotational speed are homeomorphic. Model predictive control (MPC) adopts a discrete-time model, whereas the real system is time-continuous. Hence, poor performance is obtained in the real system when the time-discrete control law is applied to the MSTRSCS through the actuator. In case of high requirements for system accuracy and control performance, conventional MPC (CMPC) cannot meet the engineering requirements. In order to lessen the impact of this phenomenon, this paper proposes a novel MPC with actuator dynamic compensation (ADCMPC), in which the dynamics of the actuator are quantified and the system performance is improved. Compared with other control techniques such as CMPC, the performance of the ADCMPC strategy in MSTRSCS is successfully validated

    A novel strain D5 isolated from Acacia confusa.

    Get PDF
    We isolated a novel strain D5 from nodules of Acacia confusa. Under strict sterile conditions the strain could successfully nodulate Acacia confusa, A. crassicarpa and A. mangium, with nitrogenase activity ranging from 18.90 to 19.86 nmol·g(-1)·min(-1). In the phylogenetic tree based on a complete 16S rRNA gene sequence, the sequence of strain D5 shared 99% homology with that of four species of genus Pseudomonas. The 685 bp nodA fragment amplified from strain D5 shared 95% homology with the nodA sequence of 9 species of genus Bradyrhizobium, with a genetic distance of 0.01682. The 740 bp nifH gene fragment was amplified from strain D5. This strain D5 nifH gene and Bradyrhizobium spp. formed a branch, showing 98% homology and a genetic distance of 0. The homology between this branch and the Bradyrhizobium spp. DG in another branch was 99%, with a genetic distance of 0.007906. These results indicate that this strain D5 is a new type of nitrogen-fixing bacterium

    An Intelligent Bio-Inspired Cooperative Decoupling Control Strategy for the Marine Boiler-Turbine System with a Novel Energy Dynamic Model

    No full text
    This paper presents an intelligent bio-inspired cooperative decoupling control strategy (IBICDC) for the problems of modeling difficulties and strong coupling in the marine boiler-turbine system (MBTS). First, the model of the main steam pressure control loop is successfully constructed by introducing the Martin-Hou equation, which solves the modeling difficulty caused by the complexity of structure, operation mechanism, and operation conditions, as well as the characteristics of nonlinearity, parameter time-varying, and time-delay in the marine boiler (MB). According to the mathematic method of homeomorphic mapping relationship between the rotational speed and the kinetic energy in the marine steam turbine with propeller (MSTP) and the feedback linearization method, the nonlinear degree of the MSTP rotational speed control loop model is reduced and the infinite point of discontinuity in the rotational acceleration when the rotational speed close to 0 is eliminated. Then, the IBICDC inspired by the internal environment regulation mechanism of human body is applied to the strong coupling problem between the two control loops, namely, to eliminate the large value sudden change of the main steam pressure caused by the change of operation conditions. The conventional decoupling methods are also presented. Finally, detailed numerical simulations are conducted to validate the effectiveness of the IBICDC strategy

    Stability Criterion for Dynamic Gaits of Quadruped Robot

    No full text
    Dynamic-stability criteria are crucial for robot’s motion planning and balance recovery. Nevertheless, few studies focus on the motion stability of quadruped robots with dynamic gait, none of which have accurately evaluated the robots’ stability. To fill the gaps in this field, this paper presents a new stability criterion for the motion of quadruped robots with dynamic gaits running over irregular terrain. The traditional zero-moment point (ZMP) is improved to analyze the motion on irregular terrain precisely for dynamic gaits. A dynamic-stability criterion and measurement are proposed to determine the stability state of the robot and to evaluate its stability. The simulation results show the limitations of the existing stability criteria for dynamic gaits and indicate that the criterion proposed in this paper can accurately and efficiently evaluate the stability of a quadruped robot using such gaits
    • …
    corecore