235 research outputs found
Finite Element analysis of drill pipe-slip system
Acknowledgments This research is supported by the National Natural Science Foundation of China (No. 51904262), the China Postdoctoral Science Foundation (No. 43XB3793XB), and the State Scholarship Fund of the China Scholarship Council (No. 201808515055).Peer reviewedPublisher PD
Achievable Sum Rate Optimization on NOMA-aided Cell-Free Massive MIMO with Finite Blocklength Coding
Non-orthogonal multiple access (NOMA)-aided cell-free massive multiple-input
multiple-output (CFmMIMO) has been considered as a promising technology to
fulfill strict quality of service requirements for ultra-reliable low-latency
communications (URLLC). However, finite blocklength coding (FBC) in URLLC makes
it challenging to achieve the optimal performance in the NOMA-aided CFmMIMO
system. In this paper, we investigate the performance of the NOMA-aided CFmMIMO
system with FBC in terms of achievable sum rate (ASR). Firstly, we derive a
lower bound (LB) on the ergodic data rate. Then, we formulate an ASR
maximization problem by jointly considering power allocation and user equipment
(UE) clustering. To tackle such an intractable problem, we decompose it into
two sub-problems, i.e., the power allocation problem and the UE clustering
problem. A successive convex approximation (SCA) algorithm is proposed to solve
the power allocation problem by transforming it into a series of geometric
programming problems. Meanwhile, two algorithms based on graph theory are
proposed to solve the UE clustering problem by identifying negative loops.
Finally, alternative optimization is performed to find the maximum ASR of the
NOMA-aided CFmMIMO system with FBC. The simulation results demonstrate that the
proposed algorithms significantly outperform the benchmark algorithms in terms
of ASR under various scenarios
Study on the effect of mineral admixtures on working and mechanical properties of the grouting material
Aiming at the existing grouting material, there are a series of problems such as poor fluidity of the grouting, rapid loss of fluidity, non-compactness of the grouting after hardening, gaps or holes, and the like. In this paper, fly ash, limestone powder, and silica fume are used to replace cement, and the influence of mineral admixtures on the fluidity, rheological properties, and strength of the grouting material are systematically studied. The experiment found that: fly ash, limestone powder, and silica fume can all improve the fluidity of the grouting material, and the effect of fly ash is the best. Compared with pure cement grouting, the initial fluidity and 60 min fluidity of the grouting material mixed with 40 wt% fly ash were reduced by 35.5% and 53.8% respectively. Fly ash and limestone powder mixed into the grouting material will significantly improve the rheological properties, while silica fume will reduce the flow properties of the grouting. The addition of fly ash and limestone powder will reduce the mechanical properties of the grouting material, while silica fume can improve the mechanical properties of the grouting material. Compared with pure cement grouting, the 28 days compressive strength with 4 wt% limestone powder grouting material is reduced by 4.5%, and the flexural strength is reduced by 6%; the 28 days compressive strength with 4 wt% silica fume grouting material is increased by 6.5%, the flexural strength increased by 1%
Three dimensional printed degradable and conductive polymer scaffolds promote chondrogenic differentiation of chondroprogenitor cells
Conductive polymers have been used for various biomedical applications including biosensors, tissue engineering and regenerative medicine. However, the poor processability and brittleness of these polymers hinder the fabrication of three-dimensional structures with desirable geometries. Moreover, their application in tissue engineering and regenerative medicine has been so far limited to excitable cells such as neurons and muscle cells. To enable their wider adoption in tissue engineering and regenerative medicine, new materials and formulations that overcome current limitations are required. Herein, a biodegradable conductive block copolymer, tetraaniline-b-polycaprolactone-b-tetraaniline (TPT), is synthesised and 3D printed for the first time into porous scaffolds with defined geometries. Inks are formulated by combining TPT with PCL in solutions which are then directly 3D printed to generate porous scaffolds. TPT and PCL are both biodegradable. The combination of TPT with PCL increases the flexibility of the hybrid material compared to pure TPT, which is critical for applications that need mechanical robustness of the scaffolds. The highest TPT content shows the lowest tensile failure strain. Moreover, the absorption of a cell adhesion-promoting protein (fibronectin) and chondrogenic differentiation of chondroprogenitor cells are found to be dependent on the amount of TPT in the blends. Higher content of TPT in the blends increases both fibronectin adsorption and chondrogenic differentiation, though the highest concentration of TPT in the blends is limited by its solubility in the ink. Despite the contradicting effects of TPT concentration on flexibility and chondrogenic differentiation, a concentration that strikes a balance between the two factors is still available. It is worth noting that the effect on chondrogenic differentiation is found in scaffolds without external electric stimulation. Our work demonstrates the possibility of 3D printing flexible conductive and biodegradable scaffolds and their potential use in cartilage tissue regeneration, and opens up future opportunities in using electric stimulation to control chondrogenesis in these scaffolds
Preparation of TiO 2
Photocatalysts comprising nanosized TiO2 particles on activated carbon (AC) were prepared by a sol-gel method. The TiO2/AC composites were characterized by X-ray diffraction (XRD), thermogravimetric (TG) analysis, nitrogen adsorption, scanning electron microscope (SEM), transmission electron microscope (TEM), and energy dispersive X-ray (EDX). Their photocatalytic activities were studied through the degradation of Rhodamine B (RhB) in photocatalytic reactor at room temperature under ultraviolet (UV) light irradiation and the effect of loading cycles of TiO2 on the structural properties and photocatalytic activity of TiO2/AC composites was also investigated. The results indicate that the anatase TiO2 particles with a crystal size of 10–20 nm can be deposited homogeneously on the AC surface under calcination at 500°C. The loading cycle plays an important role in controlling the loading amount of TiO2 and morphological structure and photocatalytic activity of TiO2/AC composites. The porosity parameters of these composite photocatalysts such as specific surface area and total pore volume decrease whereas the loading amount of TiO2 increases. The TiO2/AC composite synthesized at 2 loading cycles exhibits a high photocatalytic activity in terms of the loading amount of TiO2 and as high as 93.2% removal rate for RhB from the 400 mL solution at initial concentration of 2 × 10−5 mol/L under UV light irradiation
Dysfunction of cortical GABAergic neurons leads to sensory hyper-reactivity in a Shank3 mouse model of ASD.
Hyper-reactivity to sensory input is a common and debilitating symptom in individuals with autism spectrum disorders (ASD), but the neural basis underlying sensory abnormality is not completely understood. Here we examined the neural representations of sensory perception in the neocortex of a Shank3B-/- mouse model of ASD. Male and female Shank3B-/- mice were more sensitive to relatively weak tactile stimulation in a vibrissa motion detection task. In vivo population calcium imaging in vibrissa primary somatosensory cortex (vS1) revealed increased spontaneous and stimulus-evoked firing in pyramidal neurons but reduced activity in interneurons. Preferential deletion of Shank3 in vS1 inhibitory interneurons led to pyramidal neuron hyperactivity and increased stimulus sensitivity in the vibrissa motion detection task. These findings provide evidence that cortical GABAergic interneuron dysfunction plays a key role in sensory hyper-reactivity in a Shank3 mouse model of ASD and identify a potential cellular target for exploring therapeutic interventions
Targeting GSTP1-dependent ferroptosis in lung cancer radiotherapy: Existing evidence and future directions
Radiotherapy is applied in about 70% patients with tumors, yet radioresistance of tumor cells remains a challenge that limits the efficacy of radiotherapy. Ferroptosis, an iron-dependent lipid peroxidation regulated cell death, is involved in the development of a variety of tumors. Interestingly, there is evidence that ferroptosis inducers in tumor treatment can significantly improve radiotherapy sensitivity. In addition, related studies show that Glutathione S-transferase P1 (GSTP1) is closely related to the development of ferroptosis. The potential mechanism of targeting GSTP1 to inhibit tumor cells from evading ferroptosis leading to radioresistance has been proposed in this review, which implies that GSTP1 may play a key role in radiosensitization of lung cancer via ferroptosis pathway
Inflammation subtypes in psychosis and their relationships with genetic risk for psychiatric and cardiometabolic disorders
Cardiometabolic disorders have known inflammatory implications, and peripheral measures of inflammation and cardiometabolic disorders are common in persons with psychotic disorders. Inflammatory signatures are also related to neurobiological and behavioral changes in psychosis. Relationships between systemic inflammation and cardiometabolic genetic risk in persons with psychosis have not been examined. Thirteen peripheral inflammatory markers and genome-wide genotyping were assessed in 122 participants (n = 86 psychosis, n = 36 healthy controls) of European ancestry. Cluster analyses of inflammatory markers classified higher and lower inflammation subgroups. Single-trait genetic risk scores (GRS) were constructed for each participant using previously reported GWAS summary statistics for the following traits: schizophrenia, bipolar disorder, major depressive disorder, coronary artery disease, type-2 diabetes, low-density lipoprotein, high-density lipoprotein, triglycerides, and waist-to-hip ratio. Genetic correlations across traits were quantified. Principal component (PC) analysis of the cardiometabolic GRSs generated six PC loadings used in regression models to examine associations with inflammation markers. Functional module discovery explored biological mechanisms of the inflammation association of cardiometabolic GRS genes. A subgroup of 38% persons with psychotic disorders was characterized with higher inflammation status. These higher inflammation individuals had lower BACS scores (p = 0.038) compared to those with lower inflammation. The first PC of the cardiometabolic GRS matrix was related to higher inflammation status in persons with psychotic disorders (OR = 2.037, p = 0.001). Two of eight modules within the functional interaction network of cardiometabolic GRS genes were enriched for immune processes. Cardiometabolic genetic risk may predispose some individuals with psychosis to elevated inflammation which adversely impacts cognition associated with illness
Method for Detecting the Inside of Coke Drum Using Acoustic Signals
A distance and acoustic intensity reverberation (DAIR) physical model is developed that can be successfully applied to the signal processing of the hydraulic decoking process online monitoring. In this model, the transmission characteristics of acoustic signals generated by a moving sound source in a dynamic confined space are first analyzed using data recursion and correction according to the coordinate continuity in adjacent area and adjacent time. The results show that the nondetection zone of acoustic signals generated directly by the impact of water is eliminated, and the surface distribution of coke in the drum can be mapped in real time
- …