54 research outputs found

    Recombinant Cyclodextrinase from Thermococcus kodakarensis

    Get PDF
    A gene encoding a cyclodextrinase from Thermococcus kodakarensis KOD1 (CDase-Tk) was identified and characterized. The gene encodes a protein of 656 amino acid residues with a molecular mass of 76.4 kDa harboring four conserved regions found in all members of the α-amylase family. A recombinant form of the enzyme was purified by ion-exchange chromatography, and its catalytic properties were examined. The enzyme was active in a broad range of pH conditions (pHs 4.0–10.0), with an optimal pH of 7.5 and a temperature optimum of 65°C. The purified enzyme preferred to hydrolyze β-cyclodextrin (CD) but not α- or γ-CD, soluble starch, or pullulan. The final product from β-CD was glucose. The Vmax and Km values were 3.13 ± 0.47 U mg−1 and 2.94 ± 0.16 mg mL−1 for β-CD. The unique characteristics of CDase-Tk with a low catalytic temperature and substrate specificity are discussed, and the starch utilization pathway in a broad range of temperatures is also proposed

    New Insight Into the Diversity of SemiSWEET Sugar Transporters and the Homologs in Prokaryotes

    No full text
    Sugars will eventually be exported transporters (SWEETs) and SemiSWEETs represent a family of sugar transporters in eukaryotes and prokaryotes, respectively. SWEETs contain seven transmembrane helices (TMHs), while SemiSWEETs contain three. The functions of SemiSWEETs are less studied. In this perspective article, we analyzed the diversity and conservation of SemiSWEETs and further proposed the possible functions. 1,922 SemiSWEET homologs were retrieved from the UniProt database, which is not proportional to the sequenced prokaryotic genomes. However, these proteins are very diverse in sequences and can be classified into 19 clusters when >50% sequence identity is required. Moreover, a gene context analysis indicated that several SemiSWEETs are located in the operons that are related to diverse carbohydrate metabolism. Several proteins with seven TMHs can be found in bacteria, and sequence alignment suggested that these proteins in bacteria may be formed by the duplication and fusion. Multiple sequence alignments showed that the amino acids for sugar translocation are still conserved and coevolved, although the sequences show diversity. Among them, the functions of a few amino acids are still not clear. These findings highlight the challenges that exist in SemiSWEETs and provide future researchers the foundation to explore these uncharted areas

    An efficient fault-tolerant routing algorithm in bijective connection networks with restricted faulty edges

    Get PDF
    AbstractIn this paper, we study fault-tolerant routing in bijective connection networks with restricted faulty edges. First, we prove that the probability that all the incident edges of an arbitrary node become faulty in an n-dimensional bijective connection network, denoted by Xn, is extremely low when n becomes sufficient large. Then, we give an O(n) algorithm to find a fault-free path of length at most n+3⌈log2∣F∣⌉+1 between any two different nodes in Xn if each node of Xn has at least one fault-free incident edge and the number of faulty edges is not more than 2n−3. In fact, we also for the first time provide an upper bound of the fault diameter of all the bijective connection networks with the restricted faulty edges. Since the family of BC networks contains hypercubes, crossed cubes, Möbius cubes, etc., all the results are appropriate for these cubes

    Identification of Trans-4-Hydroxy-L-Proline as a Compatible Solute and Its Biosynthesis and Molecular Characterization in Halobacillus halophilus

    No full text
    Halobacillus halophilus, a moderately halophilic bacterium, accumulates a variety of compatible solutes including glycine betaine, glutamate, glutamine, proline, and ectoine to cope with osmotic stress. Non-targeted analysis of intracellular organic compounds using 1H-NMR showed that a large amount of trans-4-hydroxy-L-proline (Hyp), which has not been reported as a compatible solute in H. halophilus, was accumulated in response to high NaCl salinity, suggesting that Hyp may be an important compatible solute in H. halophilus. Candidate genes encoding proline 4-hydroxylase (PH-4), which hydroxylates L-proline to generate Hyp, were retrieved from the genome of H. halophilus through domain searches based on the sequences of known PH-4 proteins. A gene, HBHAL_RS11735, which was annotated as a multidrug DMT transporter permease in GenBank, was identified as the PH-4 gene through protein expression analysis in Escherichia coli. The PH-4 gene constituted a transcriptional unit with a promoter and a rho-independent terminator, and it was distantly located from the proline biosynthetic gene cluster (pro operon). Transcriptional analysis showed that PH-4 gene expression was NaCl concentration-dependent, and was specifically induced by chloride anion, similar to the pro operon. Accumulation of intracellular Hyp was also observed in other bacteria, suggesting that Hyp may be a widespread compatible solute in halophilic and halotolerant bacteria
    • …
    corecore