
Theoretical Computer Science 412 (2011) 3440–3450

Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

An efficient fault-tolerant routing algorithm in bijective connection
networks with restricted faulty edges
Jianxi Fan a,∗, Xiaohua Jia b, Baolei Cheng a, Jia Yu c

a School of Computer Science and Technology, Soochow University, Suzhou 215006, China
b Department of Computer Science, City University of Hong Kong, Hong Kong
c College of Information Engineering, Qingdao University, Qingdao 266071, China

a r t i c l e i n f o

Article history:
Received 11 December 2010
Received in revised form 6 February 2011
Accepted 10 February 2011
Communicated by D.-Z. Du

Keywords:
Conditional connectivity
Fault-free path
Bijective connection network

a b s t r a c t

In this paper, we study fault-tolerant routing in bijective connection networks with
restricted faulty edges. First, we prove that the probability that all the incident edges of an
arbitrary node become faulty in an n-dimensional bijective connection network, denoted
by Xn, is extremely low when n becomes sufficient large. Then, we give an O(n) algorithm
to find a fault-free path of length at most n+ 3⌈log2 | F |⌉ + 1 between any two different
nodes in Xn if each node of Xn has at least one fault-free incident edge and the number of
faulty edges is not more than 2n − 3. In fact, we also for the first time provide an upper
bound of the fault diameter of all the bijective connection networks with the restricted
faulty edges. Since the family of BC networks contains hypercubes, crossed cubes, Möbius
cubes, etc., all the results are appropriate for these cubes.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Fault-tolerant routing and conditional connectivity

An interconnection network plays an important role in a large-scale parallel computer system. There are a lot of
processors and links in interconnection networks of modern parallel computer systems such that it is unavoidable that the
processors and links become faulty in such a system. Therefore, fault-tolerant communication has been being an important
issue in interconnection networks with faulty processors or links.

An interconnection network can be represented by a simple graph G = (V , E), where V is the node set and E is the edge
set of graph G. In this paper, we use graphs and interconnection networks (networks for short), nodes and processors, and
edges and links interchangeably. Fault-tolerant routing is a basic communication mode in interconnection networks with
faulty processors or links. Let F denote a set of faulty nodes/edges in G. Given two different nodes u and v in G − F , fault-
tolerant routing is finding a fault-free path between u and v in G − F . Such a fault-free path can be used to transmit data
packets between u and v in G − F . Clearly, a shorter path between u and v in G − F is desirable because a delay will occur
whenever a packet passes through a node. On the other hand, fault-tolerant routing should be completed as fast as possible.

Whether there is a fault-free path between u and v in G − F depends on the node/edge connectivity of G. That is, if
the node/edge connectivity (κ(G)/λ(G)) of G is n and |F | ≤ n − 1, then there always exists a fault-free path between
u and v in G − F . However, the node/edge connectivity of G is bounded by the minimum node degree (δ(G)) of G. That is,
κ(G) ≤ λ(G) ≤ δ(G). In order to break through this bound, Harary proposed the concept of conditional node/edge connectivity

∗ Corresponding author. Tel.: +86 512 65241045.
E-mail addresses: jxfan@suda.edu.cn (J. Fan), csjia@cityu.edu.hk (X. Jia), chengbaolei@suda.edu.cn (B. Cheng), yujia@qdu.edu.cn (J. Yu).

0304-3975/$ – see front matter© 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2011.02.014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82616742?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.tcs.2011.02.014
http://www.elsevier.com/locate/tcs
http://www.elsevier.com/locate/tcs
mailto:jxfan@suda.edu.cn
mailto:csjia@cityu.edu.hk
mailto:chengbaolei@suda.edu.cn
mailto:yujia@qdu.edu.cn
http://dx.doi.org/10.1016/j.tcs.2011.02.014

J. Fan et al. / Theoretical Computer Science 412 (2011) 3440–3450 3441

[13]. Given a restricted condition R, the edge connectivity λ′(G : R) of G is defined as min{|E ′||E ′ ⊂ E(G) satisfies the
condition R and G− E ′ is disconnected or trivial} and the node connectivity κ ′(G : R) of G is defined as min{|V ′||V ′ ⊂ V (G)
satisfies the condition R and G− V ′ is disconnected or trivial}.

1.2. Related work

Esfahanian introduced the concept of conditional node/edge connectivity in hypercubes [3], where he defined the
restricted condition as ‘‘each node of the n-dimensional hypercubeQn has at least one fault-free neighbor/incident edge’’. He
proved that under this condition the conditional node/edge connectivity of Qn becomes 2n−2, which is almost as twice the
node/edge connectivity n of Qn. That is, if each node of Qn has at least one fault-free neighbor/incident edge and the number
of faulty nodes/edges does not exceed 2n − 3, there always a fault-free path between any two different nodes in Qn. We
should point out that it does not hold true that the conditional node/edge connectivity of any graph always is greater than
its node/edge connectivity if each node of it has at least one fault-free neighbor/incident edge, which can be easily verified
when taking a path of length at least 4 as evidence to the contrary. Based on Esfahanian’s result, Gu and Peng gave an O(n)
algorithm to find a fault-free path of length at most d(s, t) + 4 between any two different nodes s and t in Qn if each node
of Qn has at least one fault-free neighbor and the number of faulty nodes does not exceed 2n − 3 [24], where d(s, t) is the
distance between s and t in Qn. This algorithm possesses advantageous performance because it can find a fault-free path of
length approaching the distance between s and t in Qn in less time.

So far, the variants of hypercubes, crossed cubes, Möbius cubes, and locally twisted cubes have been proposed
[1,2,25,31,32]. They have the same characters as hypercubes. For example, they have the same node number, edge
number and node/edge connectivity as hypercubes with the same dimensions. On the other hand, they also have different
characteristics fromhypercubes. For example, their diameters are about half those of hypercubeswith the same dimensions;
hypercubes are symmetric and bipartite graphs, while these variants are generally not, etc. These characteristics have made
researchers be very interested in them [6,7,10–12,14–23,26–29]. Most of the research on the properties of these variants
were respectively carried out based on their specific definitions, which provided very detailed proofs. In fact, there exist
two common properties among these variants—bijective connection and recursively constructive nature. By using the two
properties, a family of bijective connection networks (BC networks in brief) were defined [4], which not only include the
known networks such as hypercubes, crossed cubes, Möbius cubes, locally twisted cubes, etc., but alsomany other unknown
ones. Based on this definition, diagnosability, edge-pancyclicity, and path-embeddability of bijective connection networks
were studied in [8,9].

In [30], Xu et al. studied the conditional node/edge connectivity of a family of interconnection networks. By the result in
[30], it can be inferred that any n-dimensional BC network Xn has conditional node/edge connectivity 2n− 2. Gu and Peng’s
algorithm [24] is only appropriate for hypercubes because it is based on the symmetry of hypercubes. In order to solve this
problem, [5] gave an O(n) algorithm to find a fault-free path of length at most n+3⌈log2|F |⌉+1 between any two fault-free
nodes if each node of Xn has at least one fault-free neighbor and the number of faulty nodes is not more than 2n− 3 in Xn.
However, there is still the other different problem—fault-tolerant routing in Xn with the restricted faulty edges.

1.3. Our contributions

In this paper, we will study the fault-tolerant routing of BC networks under the condition that each node has at least one
fault-free incident edge. The major contributions are as follows:

(1) By proving that each minimal edge cut set (the cut of size n) must be the incident edge set of a node in Xn, we prove
that the probability that all the incident edges of an arbitrary node become faulty inXn is extremely low (n becomes sufficient
big).

(2) We give an O(n) algorithm to find a fault-free path of length at most n+ 3⌈log2|F |⌉ + 1 between any two fault-free
nodes in an n-dimensional BC network Xn if each node of Xn has at least one fault-free incident edge and the number of
faulty edges is not more than 2n− 3.

It should be pointed out that the smallest upper bound of the fault diameter of all the BC networks has been unknown
and the result (2) actually for the first time provides an upper bound of the fault diameter of all the BC networks under the
condition of the above restricted faulty edges. On the other hand, in fact, we can use the BFS algorithm to obtain the shortest
path between any two different nodes x and y in Xn, but the time complexity of this algorithm is as high asO(n2n). Therefore,
it is important to give a fault-tolerant routing algorithm with a tradeoff between the length of the obtained path between x
and y and the time complexity of the algorithm. Our algorithm actually considers this tradeoff—it has lower time complexity
O(n) and finds a fault-free path of length n plus a logarithm term. We may conjecture that the smallest upper bound of the
fault diameter of all the BC networks with the restricted faulty edges be n plus a constant. Under this circumstance, although
our algorithm possibly increases the length of fault-free path between x and y (note that the smallest upper bound of the
fault diameter of all the BC networks with the restricted faulty edges has so far been unknown), its time complexity is as
low as O(n), which is much smaller than the time complexity O(n2n) of the BFS algorithm.

The rest of this paper is organized as follows: Section 2 provides some definitions and notations. Section 3 gives an
algorithm to find a fault-free path between any two different nodes in a BC network with the restricted faulty edges and the
analysis of the algorithm. In Section 4, we give the conclusions.

3442 J. Fan et al. / Theoretical Computer Science 412 (2011) 3440–3450

2. Preliminaries

Given a simple graph G, a path P between nodes u and v in G is defined as a node sequence P: u = u(0), u(1), . . . , u(k)
= v,

where any two nodes are different from each other except the beginning node u and the end node v. We use rev(P) to denote
the path v = u(k), u(k−1), . . . , u(0)

= u, which is the path to reverse the path P . Let V (P) and E(P) denote the node set and
edge set, respectively, in P .

If V ′ ⊆ V (G), we use G[V ′] to denote the subgraph of G induced by the node subset V ′. Furthermore, we use G − V ′ to
denote G[V (G)−V ′]. For each node v ∈ V (G), if (u, v) ∈ E(G), we denote v to be a neighbor of u or v to be adjacent to v; we
also denote u to be incident with the edge (u, v) or (u, v) is an incident edge of u. The set of all the neighbors of v is called
the neighbor set of v, denoted by Γ (G, v), that is,

Γ (G, v) = {u ∈ V (G)|(v, u) ∈ E(G)}.

Furthermore, for a set of nodes V ′ ⊆ V (G), we define the neighbor set of V ′ as

Γ (G, V ′) =

x∈V ′

Γ (G, x)− V ′.

Moreover, for any u ∈ V (G), and any (x, y) ∈ E(G), let Ne(G, u) = {(u, v)|(u, v) ∈ E(G)} and CoNe(G, x, y) = (Ne(G, x)
Ne(G, y))− E ′.
Given two graphs G′ and G′′, if there exists a bijection ϕ from V (G′) to V (G′′) such that (u′, v′) ∈ E(G′) if and only if

(ϕ(u′), ϕ(v′)) ∈ E(G′′) for any two nodes u′, v′ ∈ V (G′), then we say that G′ is isomorphic to G′′ and ϕ is an isomorphic
mapping from G′ to G′′. If the graphs G′ and G′′ are two isomorphic graphs, we write G′ ∼= G′′. The isomorphic graphs can be
regarded as identical graphs.

For an integer n ≥ 1, a binary string u of length n is denoted by un−1un−2 . . . u0, where ui ∈ {0, 1} for any integer
i = 0, 1, . . . , n− 1. The ith bit ui of u can also be written as bit(u, i). If x = xn−1xn−2 . . . x0 is a binary string of length n, we
can use ix to denote the binary string ixn−1xn−2 . . . x0 of length n+ 1 for any integer i ∈ {0, 1}. Furthermore, let U ⊆ {0, 1}n,
that is, U is a set of some binary strings of length n. Then, we use iU to denote the set {iu|u ∈ U} for any integer i ∈ {0, 1}.
Letting P: u = u(0), u(1), . . . , u(k)

= v denote a sequence between u and v, where u(i) is a binary string of length n for any
i ∈ {0, 1}, we use iP to denote the sequence iu = iu(0), iu(1), . . . , iu(k)

= iv for any integer i ∈ {0, 1}.
Before introducing the definition of BC networks, we first give the definition of bijective connection in the following [4]:

Definition 1 ([4]). Let G be a graph. If V (G) = V1


V2, V1 ≠ φ, V2 ≠ φ, and V1


V2 = φ. We say that there exists a

bijective connection between the subsets V1 and V2 in G, denoted by V1
G
←→ V2, if G satisfies the two following conditions:

(1) For every u ∈ V1, there exists a unique v ∈ V2 such that {u, v} ∈ E(G); and
(2) For every u ∈ V2, there exists a unique v ∈ V1 such that {u, v} ∈ E(G).

A definition of bijective connection networks (in brief, BC networks) without labels in their nodes was given in [4]. In this
paper, for the sake of our design of algorithm in Section 3, we adopt the definition of BC networks with labels in their nodes
[5]. An n-dimensional BC network, denoted by Xn, is an n-regular graph with 2n nodes. We identify each node of Xn by a
unique binary string of length n. The set of all the n-dimensional BC networks is called the family of the n-dimensional BC
networks, denoted by Ln. Xn and Ln may be recursively defined as below.

Definition 2 ([4]). The 1-dimensional BC network X1 is a complete graph on two nodes 0 and 1. The family of the
1-dimensional BC network is defined as L1 = {X1}. Let G be a graph. G is an n-dimensional BC network, denoted by Xn,
if there exist V0, V1 ⊂ V (G) such that the following three conditions hold:

(1) V0 = 0V ′0 and V1 = 1V ′1, where V ′0 = V ′1 = {0, 1}
n−1;

(2) V (G) = V0


V1, V0 ≠ ∅, V1 ≠ ∅, and V0


V1 = ∅; and

(3) V0
G
←→ V1, G[V0] ∈ Ln−1, and G[V1] ∈ Ln−1.

The family of the n-dimensional BC networks is defined as Ln = {G|G is an n-dimensional BC network}.

Fig. 1 demonstrates two 3-dimensional BC networks with labels, in which (a) is isomorphic to Q3 and (b) is isomorphic to
CQ3,MQ3, and TQ3, respectively. Fig. 2 demonstrates two 4-dimensional BC networks with labels, in which (a) is isomorphic
to Q4 and (b) is isomorphic to CQ4.

Notation 3. For any Xn ∈ Ln and i ∈ {0, 1}, let Hi = (Vi, Ei), where V (X i
n−1) = iVi and Ei = {(u, v)|(iu, iv) ∈ E(X i

n−1)}. By

Definition 2, iVi
Xn
←→ (1− i)V1−i. Then, X i

n−1 can be denoted by iHi. Furthermore, if F ′ ⊂ Ei, then we use iF ′′ to denote F ′, where
F ′′ = {(u′, v′)|(iu′, iv′) ∈ F ′}.

J. Fan et al. / Theoretical Computer Science 412 (2011) 3440–3450 3443

a b

Fig. 1. Two 3-dimensional BC networks with labels.

Fig. 2. Two 4-dimensional BC networks with labels.

3. Fault-tolerant routing algorithm

In this section, we will first prove that it is reasonable to introduce the concept of restricted faulty edge set into BC
networks. We will then give an algorithm to find a fault-free path between any two different nodes in any n-dimensional
BC network (n ≥ 2). Finally, we will analyze the time complexity and the length of the fault-free path between the two
different nodes found by the algorithm.

Lemma 4 ([4]). For any integer n ≥ 1 and Xn ∈ Ln, λ(Xn) = n.

Lemma 5. For any Xn ∈ Ln and F ⊂ E(X3) with |F | = 3, if X3 − F is disconnected, then there is a u ∈ V (X3) such that
F = Ne(X3, u) and X3 − F has exactly two connected components, one is X3[{u}] and the other is X3 − {u}.

Proof. Let F = F0


F1


F2, where F0 ⊂ E(X0
2), F1 ⊂ E(X1

2), and F2 = F

{(u, v) ∈ E(X3)| u ∈ V (X0

2) and v ∈ V (X1
2)}.

Without loss of generality, we assume that |F0| ≤ |F1|. Then, |F0| ≤ ⌊
|F |
2 ⌋ ≤ ⌊

n
2⌋ ≤ 1. By Lemma 4, X0

2 − F0 is connected. If
F2 = ∅, by Definition 2, each node in X1

2 − F1 is adjacent to one node in X0
2 − F0 in X3 − F and thus X3 − F is connected, a

contradiction. Therefore, F2 ≠ ∅. Without loss of generality, we deal with the following cases.
Case 1. |F1| ≤ 1. Then, X1

2 − F1 is connected and |V (X1
2)| > 3 > |F2|. Hence, there exists one node in X1

2 − F1 that is
adjacent to one node in X0

2 − F0 in X3 − F and thus X3 − F is connected, a contradiction.
Case 2. |F1| = 2. Then, |F0| = 0 and |F2| = 1. If X1

2 − F1 is connected, similar to Case 1, we can claim that X2 − F is
connected, a contradiction. Hence, X1

2 − F1 is disconnected. Obviously, F1 contains two edges in X1
2 . And, the two edges in F1

have no common end node or have exact one end node.

3444 J. Fan et al. / Theoretical Computer Science 412 (2011) 3440–3450

If the former case holds, then X1
2 − F1 has exact two connected components, each of which is a complete graph on two

nodes. Clearly, at least one node in each connected component of X1
2 − F1 is adjacent to one node in X0

2 − F0 = X0
2 in X3 − F

and thus X3 − F is connected, a contradiction.
Otherwise, that is, there exists a node u in X1

2 − F1, such that Ne(X1
2 , u) = F1. Then, X1

2 − F1 has exactly two connected
components, one is X1

2 [{u}] and the other is X1
2 − {u}. Clearly, at least one node in the connected component X1

2 − {u} is
adjacent to one node in X0

2 − F0 = X0
2 in X3 − F . Thus, umust be incident with the unique edge in F2. That is, Ne(X3, u) = F

and X3 − F has exactly two connected components, one is X2[{u}] and the other is X3 − {u}.
In summary, the lemma holds. �

Then, we have the following theorem, which demonstrates the reasonability that we introduce the concept of restricted
faulty edge set into bijective connection networks.

Theorem 6. For any integer n ≥ 3, Xn ∈ Ln, and F ⊂ E(Xn) with |F | = n, if Xn − F is disconnected, then there is a u ∈ V (Xn)
such that F = Ne(Xn, u) and Xn − F has exactly two connected components, one is Xn[{u}] and the other is Xn − {u}.

Proof. We prove the lemma by induction on n. By Lemma 5, the lemma holds for n = 3. Supposing that the lemma holds
for n = τ − 1 (τ ≥ 4). For n = τ , let F = F0


F1


F2, where F0 ⊂ E(X0
τ−1), F1 ⊂ E(X1

τ−1), and F2 = F

{(u, v) ∈ E(Xτ)|

u ∈ V (X0
τ−1) and v ∈ V (X1

τ−1)}. Without loss of generality, we assume that |F0| ≤ |F1|. Then, |F0| ≤ ⌊
|F |
2 ⌋ ≤ ⌊

n
2⌋ ≤ n − 2.

By Lemma 4, X0
τ−1 − F0 is connected. If F2 = ∅, by Definition 2, each node in X1

τ−1 − F1 is adjacent to one node in X0
τ−1 − F0

in Xτ − F and thus Xτ − F is connected, a contradiction. Therefore, F2 ≠ ∅. Without loss of generality, we deal with the
following cases.

Case 1. |F1| ≤ τ −2. Then, X1
τ−1−F1 is connected and |V (X1

τ−1)| = 2τ−1 > τ > |F2|. Hence, at least one node in X1
τ−1−F1

is adjacent to one node in X0
τ−1 − F0 in Xτ − F and thus Xτ − F is connected, a contradiction.

Case 2. |F1| = τ − 1. Then |F0| = 0 and |F2| = 1. If X1
τ−1 − F1 is connected, similar to Case 1, we can claim that Xτ − F is

connected, a contradiction. Hence, X1
τ−1 − F1 is disconnected. According to the induction hypothesis, there exists a node u

in X1
τ−1, such that Ne(X1

τ−1, u) = F1 and X1
τ−1 − F1 has exactly two connected components, one is X1

τ−1[{u}] and the other is
X1

τ−1−{u}. Clearly, at least one node in the connected component of X1
τ−1−{u} is adjacent to one node in X0

τ−1− F0 = X0
τ−1

in Xτ − F . Thus, umust be incident with the unique edge in F2. That is, Ne(Xτ , u) = F and Xτ − F has exactly two connected
components, one is Xτ [{u}] and the other is Xτ − {u}.

In summary, the lemma holds. �

Remark. Theorem 6 implies that each minimal edge cut set (the cut of size n) must be the incident edge set of a node in Xn.
Since Xn has n nodes and n2n−1 edges, Theorem 6 actually proves that there exist exactly 2n minimal edge cut sets amongn2n−1

n


edge sub-sets of size n. This fact shows that the probability that all the incident edges of an arbitrary node becomes

faulty in Xn is extremely lowwhen n becomes sufficient large. For example, even selecting n = 8, the probability that all the
incident edges of an arbitrary node becomes faulty in Xn is

288×27
8

 ≤ 10−16.

As a result, it is reasonable that we introduce the concept of restricted faulty edge set into bijective connection networks.

Then, we will give an fault-tolerant routing algorithm in BC networks with restricted faulty edges, which based the
following two theorems.

Theorem 7. For any integers n ≥ 3 and k ∈ {0, 1}, Xn ∈ Ln, faulty edge set F ⊂ E(Xn) with |F | ≤ n − 1, and x ∈ V (Xk
n−1),

there exists a path P of length 1 or 2 in Xn − F from x into some node in X1−k
n−1 such that |V (P)


V (X1−k

n−1)| = 1.

Proof. Without loss of generality, we only need consider the case for k = 0. Let z be the neighbor of x in X1
n−1 and α1,

α2, . . . , αn−1 be the n−1 neighbors of x in X0
n−1. Furthermore, let β1, β2, . . . , βn−1 be the n−1 neighbors of α1, α2, . . . , αn−1

in X1
n−1, respectively. Then,

P1 : x, α1, β1
P2 : x, α2, β2

.
Pn−1 : x, αn−1, βn−1

Pn : x, z

are n paths of length 1 or 2 from x into X1
n−1.

Since x, α1, α2, . . . , and αn−1 are different from each other, by Definition 2, z, β1, β2, . . . , βn−1 are also different from
each other. Hence, P1, P2, . . . , Pn are n node-disjoint (except x) and edge-disjoint paths from x into X1

n−1. Thus, each edge in
F lies in at most one of the n paths P1, P2, . . . , Pn, which implies that there exists a path Pj of length 1 or 2 in Xn − F from x
into some node in X1

n−1 − F such that |V (Pj)


V (X1
n−1)| = 1, where 1 ≤ j ≤ n. �

J. Fan et al. / Theoretical Computer Science 412 (2011) 3440–3450 3445

Lemma 8 ([4]). There is no cycle of length 3 in any BC network.

The following two theorems will help us design a fault-tolerant routing algorithm in bijective connection networks with
the restricted faulty edges.

Theorem 9. For any integers n ≥ 3 and k ∈ {0, 1}, Xn ∈ Ln, faulty edge set F ⊂ E(Xn) with |F | ≤ 2n − 3, and u ∈ V (Xk
n−1),

if each node has at least one fault-free incident edge in Xn, then there exists at least one path P : α0 = u, α1, . . . , αl, of length l
with 1 ≤ l ≤ 3 in Xn − F from u into X1−k

n−1 , such that {α0, α1, . . . , αl−1} ⊂ V (Xk
n−1) and αl ∈ V (X1−k

n−1).

Proof. Without loss of generality, we only need consider the case for k = 0. Let P1, P2, . . . , Pn be the n node-disjoint and
edge-disjoint paths from x into X1

n−1 listed as in the proof of Theorem 7. If there exists a fault-free path Pi among them,
1 ≤ i ≤ n, then Pi is such a path that the conditions hold in the theorem.

Otherwise, arbitrarily choose a fault-free incident edge (u, v) of u. Then, v ∈ V (X0
n−1) (the reason is that there does

not exist a fault-free path of length 1 from u into X1
n−1). Let γ1, γ2, . . . , γn−2 be all the neighbors, except u, of v in X0

n−1.
Furthermore, let δ1, δ2, . . . , and δn−2 be the neighbors of γ1, γ2, . . . , and γn−2 in X1

n−1, respectively. Since γ1, γ2, . . . , and
γn−2 are different from each other, by Definition 2, δ1, δ2, . . . , δn−2 are different from each other. Hence,

P ′1 : v, γ1, δ1
P ′2 : v, γ2, δ2

.
P ′n−2 : v, γn−2, δn−2

are n− 2 node-disjoint and edge-disjoint paths from v into X1
n−1, each of which is of length 2.

Since P1, P2, . . . , Pn are n faulty paths, which means that |F


E(Pj)| ≥ 1 for any j with 1 ≤ j ≤ n. Also considering that
P1, P2, . . . , Pn are n node-disjoint and edge-disjoint paths,F n

j=1

E(Pj)

 =
 n
j=1


F


E(Pj)
 = n−

j=1

F E(Pj)
 ≥ n.

Therefore,F −

F
 n

j=1

E(Pj)

 ≤ n− 3.

Considering that each edge in F − (F
n

j=1 E(Pj)) lies in at most one of the n − 2 paths P ′1, P
′

2, . . . , P
′

n−2, there exists a
fault-free path, say P ′t , among these n− 2 paths, where 1 ≤ t ≤ n− 2. Then, u, v, γt , δt is a path of length 3 in Xn − F from
u into X1

n−1, such that {u, v, γt} ⊂ V (X0
n−1) and δt ∈ V (X1

n−1). In summary, the theorem holds. �

In the following, according to the above results, we will give an algorithm to find a fault-free path between any two
different nodes in any n-dimensional BC network Xn with n ≥ 2.

Algorithm: Fault-Free-Path(Xn, F , x, y)
Input: An n-dimensional BC network Xn with n ≥ 2, a faulty edge set F ⊂ E(Xn) satisfying that any node has at least one
fault-free incident edge and |F | ≤ 2n− 3, and two different nodes x and y in Xn
Output: A path between x and y in Xn − F .
1 if (x, y) ∈ E(Xn)− F
2 then return (x, y)
3 if n = 2
4 then return (A fault-free path between x and y in X2)
5 if F = ∅
6 then return (Path-3(Xn, x, y))
7 let i← bit(x, n− 1) and j← bit(y, n− 1)
8 let Fk ← F


E(Xk

n−1) for any k ∈ {0, 1} and F2 ← (F − F0)− F1
9 switch

10 case i = 1− j :
11 if |Fi| ≤ |F1−i|
12 then return (Path-1(Xn, i, Fi, F1−i, F2, x, y))
13 else let P ← Path-1(Xn, 1− i, F1−i, Fi, F2, y, x)
14 return (rev(P))
15 case i = j :
16 if |Fi| ≤ |F1−i|
17 then let x← ix′, y← iy′, Fi ← iF ′, and X i

n−1 ← iXn−1
18 let P ← Fault-Free-Path(Xn−1, F ′, x′, y′)
19 return (iP)

3446 J. Fan et al. / Theoretical Computer Science 412 (2011) 3440–3450

20 else let P ← Path-2(Xn, i, Fi, F1−i, F2, x)
21 let P ′ ← Path-2(Xn, i, Fi, F1−i, F2, y)
22 let P be x = α0, α1, . . . , αl and P ′ be y = β0, β1, . . . , βm, where 1 ≤ l,m ≤ 3
23 if V (P)


V (P ′) ≠ ∅

24 then let αk = βk′ be the first common node of P and P ′, where 0 ≤ k, k′ ≤ 2
25 return (x, α1, α2, . . . , αk, βk′−1, βk′−2, . . . , β1, y)
26 else let αl ← (1− i)x′, βm ← (1− i)y′, F1−i ← (1− i)F ′,
27 and X1−i

n−1 ← (1− i)Xn−1
28 let P ← Fault-Free-Path(Xn−1, F ′, x′, y′)
29 return (x, α1, α2, . . . , αl−1, (1− i)P, βm−1, βm−2, . . . , β1, y)

Path-1(Xn, i, F , F1−i, F2, x, y)
1 let z be the neighbor of y in X i

n−1
2 if (y, z) /∈ F2
3 then let z ← iz ′, x← ix′, F ← iF ′, and X i

n−1 ← iXn−1
4 let P ← Fault-Free-Path(Xn−1, F ′, x′, z ′)
5 return (iP, y)
6 else if There exists a neighbor v of y in X1−i

n−1 and the neighbor u of v in X i
n−1 such that

7 (y, v) /∈ F1−i and (v, u) /∈ F2
8 then let u← iu′, x← ix′, F ← iF ′, and X i

n−1 ← iXn−1
9 let P ← Fault-Free-Path(Xn−1, F ′, x′, u′)

10 return (iP, v, y)
11 else Select a neighbor v of y in X1−i

n−1 such that (y, v) /∈ F1−i
12 Select a neighbor u of v in X1−i

n−1 − {y} and the neighbor w of u in X i
n−1 such

13 that (u, v) /∈ F1−i and (u, w) /∈ F2
14 let w← iw′, x← ix′, F ← iF ′, and X i

n−1 ← iXn−1
15 let P ← Fault-Free-Path(Xn−1, F ′, x′, w′)
16 return (iP, u, v, y)

Path-2(Xn, i, Fi, F1−i, F2, x)
1 let z be the neighbor of x in X1−i

n−1
2 if (x, z) /∈ F2
3 then return (x, z)
4 else if There exists a neighbor v of x in X i

n−1 and the neighbor u of v in V (X1−i
n−1) such

5 that (x, v) /∈ Fi and (v, w) /∈ F2
6 then return (x, v, u)
7 else Select a neighbor v of x in X i

n−1 such that (x, v) /∈ Fi
8 Select a neighbor u of v in X i

n−1 − {x} and the neighbor w of u in X1−i
n−1 such

9 that (u, v) /∈ Fi and (u, w) /∈ F2
10 return (x, v, u, w)

Path-3(Xn, x, y)
1 if (x, y) ∈ E(Xn)
2 then return (x, y)
3 if n = 2
4 then return (A path between x and y in X2)
5 let i← bit (x, n− 1) and j← bit (y, n− 1)
6 switch
7 case i = j :
8 let x← ix′, y← iy′, and X i

n−1 ← iXn−1
9 let P ← Path-3(Xn−1, x′, y′)

10 return (iP)
11 case i = 1− j :
12 let z be the neighbor of x in X j

n−1

13 let z ← jz ′, y← jy′, and X j
n−1 ← jXn−1

14 let P ← Path-3(Xn−1, z ′, y′)
15 return (x, jP)

J. Fan et al. / Theoretical Computer Science 412 (2011) 3440–3450 3447

In order to analyze the performance of Algorithm Fault-Free-Path, we need the following results.

Lemma 10 ([9]). For any integers k ≥ 1 and n ≥ ⌈ k+12 ⌉, Xn ∈ Ln, and V ′ ⊂ V (Xn)with |V ′| = k, |Γ (Xn, V ′)| ≥ kn− k(k+1)
2 +1.

Theorem 11. For any integers n ≥ 3 and k ∈ {0, 1}, Xn ∈ Ln, faulty edge set F ⊂ E(Xn) with |F | ≤ 2n− 3, and u, v ∈ V (Xk
n−1)

with u ≠ v, if each node has at least one fault-free incident edge in Xn and there does not exist a fault-free path of length 1 or 2
from u into X1−k

n−1 among the n disjoint paths listed as in the proof of Theorem 7, then one of the following two results holds:

(1) There exists a fault-free path of length l with 1 ≤ l ≤ 3 between u and v in Xk
n−1.

(2) There exists a fault-free path P1 of length 3 from u into X1−k
n−1 and a fault-free path P2 of length 1 or 2 from v into X1−k

n−1 , such
that V (P1)


V (P2) = ∅.

Proof. Without loss of generality, we only need consider the case for k = 0. Let F0 = F


E(X0
n−1). If (u, v) ∈ E(X0

n−1)− F0
or there exists a node w in X0

n−1 such that (u, w), (v, w) ∈ E(X0
n−1)− F0, then there exists a fault-free path of length 1 or 2

between u and v in X0
n−1 and thus the theorem holds.

Otherwise, if there does not exist a fault-free path of length 1 or 2 from u into X1
n−1 among the n node-disjoint and edge-

disjoint paths P ′1, P
′

2, . . . , P
′
n listed as in the proof of Theorem 7, each of the n paths contains at least one faulty edge. Thus,

at least n faulty edges in F lie in these n paths. By the proof of Theorem 7, let

P1 : v, γ1, δ1
P2 : v, γ2, δ2

.
Pn−1 : v, γn−1, δn−1

Pn : v, z

be the n node-disjoint and edge-disjoint paths from v into X1
n−1, where γi ∈ E(X0

n−1) and z, δi ∈ E(X1
n−1), 1 ≤ i ≤ n− 1. By

Lemma 10, |Γ (X0
n−1, {u, v})| ≥ 2n− 4. Then,

|Γ (X0
n−1, u)


Γ (X0

n−1, v)| = |Γ (X0
n−1, u)| + |Γ (X0

n−1, v)| − |Γ (X0
n−1, {u, v})|

≤ 2(n− 1)− (2n− 4) = 2.

That is, u and v have at most two common neighbors (Notice that the path passing through a common neighbor of u and
v between u and v is faulty and of length 2, if any) in X0

n−1. Hence, by Definition 2, there are at least n − 2 paths among
P1, P2, . . . , Pn that are node-disjoint and edge-disjoint with the n paths P ′1, P

′

2, . . . , P
′
n from u into X1

n−1. Since at least n faulty
edges lie in the n paths P ′1, P

′

2, . . . , P
′
n from u into X1

n−1 and each edge in F lies in at most one of the n paths P1, P2, . . . , Pn,
and |F | − n ≤ (2n − 3) − n = n − 3, there exists at least one fault-free path, say Pj : v, γj, δj or Pj : v, z, among the
paths P1, P2, . . . , Pn such that Pj is node-disjoint and edge-disjoint with each of the n paths P ′1, P

′

2, . . . , P
′
n from u into X1

n−1.
Furthermore, by Theorem 9, there exists a fault-free path P ′ : x(0)

= u, x(1), x(2), x(3) of length 3 from u into X1
n−1 such that

{x(0), x(1), x(2)
} ⊂ V (X0

n−1) and x(3)
∈ V (X1

n−1). If Pj is the path v, z, then Pj is a fault-free path of length 1 from v into X1−k
n−1

such that V (P ′)


V (Pj) = ∅ and thus the theoremholds; otherwise, Pj must be the path v, γj, δj, which is a fault-free path of
length 2 from v into X1−k

n−1 . Noticing that γj /∈ {u, x(1)
}, if γj = x(2), then u, x(1), x(2), v is a fault-free path of length 3 between

u and v in X0
n−1 and the theorem also holds; otherwise, by Definition 2, V (P ′)


V (Pj) = ∅ and the theorem still holds. �

Lemma 12. For any integers n ≥ 3 and k ∈ {0, 1}, Xn ∈ Ln, and faulty edge set F ⊂ E(Xn) with |F | ≤ 2n− 3, if each node has
at least one fault-free incident edge in Xn, then there exists a node z ∈ {x, y}, such that there is a fault-free path of length 1 or 2
from z into X1−k

n−1 for any two different nodes x, y ∈ V (Xk
n−1) and (x, y) /∈ E(Xn).

Proof. Without loss of generality, we only need consider the case for k = 0. Let P1, P2, . . . , Pn be the n node-disjoint and
edge-disjoint paths from x into X1

n−1 listed as in the proof of Theorem 7. If one of the n paths P1, P2, . . . , and Pn are fault-free,
then the lemma holds; otherwise, that is, each of the n paths contains at least one faulty edge. Then,

∑n
i=1 |F


E(Pi)| ≥ n.

Furthermore, let P ′1, P
′

2, . . . , P
′
n be the n node-disjoint and edge-disjoint paths from y into X1

n−1 listed as in the proof of
Theorem 7. By Lemma 10, |Γ (X0

n−1, {x, y})| ≥ 2n− 4. Similar to the proof in Theorem 11, x and y have at most two common
neighbors.

Hence, there are at least n − 2 paths of P ′1, P
′

2, . . . , P
′
n that are node-disjoint and edge-disjoint with P1, P2, . . . , Pn.

Furthermore, since |F | −
∑n

i=1 |F


E(Pi)| ≤ (2n− 3)− n = n− 3, there is a fault-free path among P ′1, P
′

2, . . . , P
′
n. Noticing

that all the paths P ′1, P
′

2, . . . , P
′
n have length 1 or 2, the lemma holds. �

With the above results, wewill analyze the time complexity of Algorithm Fault-Free-Path and the length of the fault-free
path between two given fault-free nodes in Xn found by Algorithm Fault-Free-Path under the worst case in the following
theorem,

3448 J. Fan et al. / Theoretical Computer Science 412 (2011) 3440–3450

Theorem 13. For any integer n ≥ 3, Xn ∈ Ln, F ⊂ E(Xn)with |F | ≤ 2n−3 such that each node has at least one fault-free incident
edge, and x, y ∈ V (Xn) with x ≠ y, Algorithm Fault-Free-Path can find a fault-free path of length at most n + 3⌈log2|F |⌉ + 1
in O(n) time under the worst case, where the worst case is refer to as the scenario that the fault-free path found by Algorithm
Fault-Free-Path is as long as possible and the time taken by it is as much as possible.

Proof. We will prove this theorem by using the method in [5]. Without loss of generality, the scenario can be presented as
the following processes of n− 1 steps:

(1) At the first step, the following conditions will hold:
|F | = 2n−3, |F


E(X1

n−1)| ≤ |F


E(X0
n−1)|, x, y ∈ V (X0

n−1), and x and y are adjacent to the nodes x′ and y′, respectively,
in X1

n−1 such that (x, x′), (y, y′) ∈ F , and there exists neither a fault-free path of length 1, 2, or 3 between x and y in X0
n−1 nor

a fault-free path of length 2 from x into X1
n−1 among the n disjoint paths listed as in the proof of Theorem 7.

By Theorem 11 and Lemma 12, Algorithm Fault-Free-Path will find a fault-free path P01 of length 3 from x to a node,
say α1, in X1

n−1 and a fault-free path P02 of length 2 from y to a node, say β1, in X1
n−1 such that V (P01)


V (P02) = ∅. Thus,

the problem to find a fault-free path between x and y for any x, y ∈ V (Xn) with x ≠ y and the restricted faulty edge set
F ⊂ E(Xn) with |F | ≤ 2n − 3 in Xn is reduced to that to find a fault-free path between α1 and β1 with α1 ≠ β1 for the
faulty edge set F1 ⊂ E(X1

n−1) with |F1| ≤ ⌊
|F |
2 ⌋ in X1

n−1 − F1 by Algorithm Fault-Free-Path. Let F1 = F


E(X1
n−1), then

|F1| ≤ ⌊
|F |
2 ⌋ ≤ ⌊

2n−3
2 ⌋ = n − 2. By Lemma 4, X1

n−1 − F1 is connected, which means that there exists a fault-free path
between any two different nodes in X1

n−1.
At this step, the process to compute Fi = F


E(X i

n−1) for any i ∈ {0, 1} and F2 = F−F0−F1 can be conducted as follows:
check whether the left-most bits of the two end nodes of each edge in F are 0 or 1. For any i ∈ {0, 1}, if the left-most bits
of the two end nodes of one edge (u, v) in F are both i, then (u, v) will be added into Fi; otherwise, it will be added into F2.
During this process, |Fk| for any k ∈ {0, 1} can be at the same time computed. Obviously, this process will take time O(|F |).
On the other hand, the process to check whether an edge belongs to F0 or F2 will take time O(|F0|) or O(|F2|), respectively.
As a result, the time taken at this step is O(|F | + |F0| + |F2|) = O(|F |).

For convenience of presentation, we use Xn−1 to denote X1
n−1, where V (Xn−1) = {s|1s ∈ V (Xn)} and E(Xn−1) =

{(s, t)|(1s, 1t) ∈ E(Xn)}, let F (1)
= {(s, t)|(1s, 1t) ∈ F1}, α1 = 1x(1), and β1 = 1y(1).

(2) At the second step, let F (1)
j = F (1) E(X j

n−2) for any j ∈ {0, 1} and F (1)
2 = (F (1)

−F (1)
0)−F (1)

1 . The following conditions
will hold:
|F (1)
| ≤ ⌊

|F |
2 ⌋, x

(1), y(1)
∈ V (X0

n−2), |F
(1)
1 | ≤ ⌊

|F (1)
|

2 ⌋, x
(1) and y(1) are respectively adjacent to the nodes x′(1) and y′(1) in

X1
n−2 such that (x(1), x′(1)), (y(1), y′(1)) ∈ F (1)

2 , and there does not exist a fault-free path of length 1 or 2 between x(1) and y(1) in
X0
n−2. Since |F

(1)
| = |F1| ≤ n−2, by the proof of Theorem7, Algorithm Fault-Free-Pathwill find a fault-free path P11 of length

2 from x(1) to a node α2 in X1
n−2 and a fault-free path P12 of length 2 from y(1) to β2 in X1

n−2 such that V (P11)


V (P12) = ∅
(under the worst case). Similar to the discussion in (1), this process will take time O(|F (1)

| + |F (1)
0 | + |F

(1)
2 |) = O(|F (1)

|).
Furthermore, we use Xn−2 to denote X1

n−2, where V (Xn−2) = {s|1s ∈ V (Xn−1)} and E(Xn−2) = {(s, t)|(1s, 1t) ∈ E(Xn−1)},
let F (2)

= {(s, t)|(1s, 1t) ∈ F (1)
1 }, α2 = 1x(2), and β2 = 1y(2).

(3) At the (m+ 1)-th step for any integer m with 2 ≤ m ≤ ⌈log2|F |⌉ − 1, let F (m)
j = F (m)


E(X j

n−m−1) for any j ∈ {0, 1}
and F (m)

2 = (F (m)
− F (m)

0)− F (m)
1 . The following conditions will hold:

|F (m)
| ≤ ⌊

|F (m−1)
|

2 ⌋, x(m), y(m)
∈ V (X0

n−m−1), |F
(m)
1 | ≤ ⌊

|F (m)
|

2 ⌋, x
(m) and y(m) are respectively adjacent to the nodes

x′(m) and y′(m) in X1
n−m−1 such that (x(m), x′(m)), (y(m), y′(m)) ∈ F (m)

2 , and there does not exist a fault-free path of length
1 or 2 between x(m) and y(m) in X0

n−m−1. By the proof of Theorem 7, Algorithm Fault-Free-Path will find a fault-free path
Pm1 of length 2 from x(m) to a node αm+1 in X1

n−m−1 and a fault-free path Pm2 of length 2 from y(m) to βm+1 in X1
n−m−1

such that V (Pm1)


V (Pm2) = ∅ (under the worst case). Similar to the discussion in (1), this process will take time
O(|F (m)

| + |F (m)
0 | + |F

(m)
2 |) = O(|F (m)

|).
Furthermore,we use Xn−m−1 to denote X1

n−m−1, where V (Xn−m−1) = {s|1s ∈ V (Xn−m)} and E(Xn−m−1) = {(s, t)|(1s, 1t) ∈
E(Xn−m)}, and let F (m+1)

= {s|1s ∈ F (m)
1 }, α(m+1) = 1x(m+1), and β(m+1) = 1y(m+1).

(4) At the t-th step for t = ⌈log2|F |⌉. It holds that |F (t)
| = 0. Thus, Algorithm Fault-Free-Pathwill call the procedure Path-

3,whichwill find a path between x(t) and y(t) with x(t)
≠ y(t) in X1

n−t without faulty edges and take timeO((n−1)−(t−1)) =
O(n).

According to the above discussion, we analyze the time complexity and the length of the fault free path obtained by
Algorithm Fault-Free-Path under the worst case as follows:

For any integer i with 1 ≤ i ≤ ⌈log2|F |⌉, we have |F (i)
| ≤ ⌊

|F (i−1)
|

2 ⌋, where F (0)
= F .

As a result, in the first ⌈log2|F |⌉ steps, Algorithm Fault-Free-Path takes time at most

⌈log2|F |⌉−
i=1

O

|F (i−1)

|

2


≤

⌈log2(2n−3)⌉−
i=1

O

2n− 3
2i−1


= O(2n− 3) = O(n).

J. Fan et al. / Theoretical Computer Science 412 (2011) 3440–3450 3449

To sum up, under the worst case, the time complexity of Algorithm Fault-Free-Path is

⌈log2|F |⌉−
i=1

O

|F (i−1)

|

2


+ O(n) = O(n).

According to the above discussion, the length of the fault free path obtained by Algorithm Fault-Free-Path under the
worst case is

5+ 4(⌈log2|F |⌉ − 1)+ (n− ⌈log2|F |⌉) = n+ 3⌈log2|F |⌉ + 1. �

By the result in [30], it can be inferred that any n-dimensional BC network Xn has conditional edge connectivity 2n− 2,
which is actually a corollary from Theorem 13 as follows:

Lemma 14 ([4]). If the isomorphic graphs are regarded as the identical graph, there are exactly two 3-dimensional BC networks:
one is Q3 and the other is CQ3.

Corollary 15. For any integer n ≥ 2 and Xn ∈ Ln, λ′(Xn) = 2n− 2.

Proof. For n = 2, 2n− 2 = n. By Lemma 4, the corollary holds.
For any integer n ≥ 3 and Xn ∈ Ln, by Theorem 13, λ′(Xn) ≥ 2n− 2. In what follows, we prove that λ′(Xn) ≤ 2n− 2 for

any integer n ≥ 3 and Xn ∈ Ln.
By Lemmas 4 and 14, the corollary can be easily verified to hold for n = 3.
For n ≥ 4, select u ∈ V (X0

n−1) and v ∈ V (X1
n−1) such that (u, v) ∈ E(Xn). Then we can verify that CoNe(Xn, x, y) ⊂ E(Xn)

and |CoNe(Xn, x, y)| = |Ne(Xn, x)


Ne(Xn, y)−{(x, y)}| = 2n−2. Clearly, Xn−CoNe(Xn, x, y) is disconnected, which implies
that λ′(Xn) ≤ 2n− 2. As a consequence, λ′(Xn) = 2n− 2. �

4. Conclusions

In this paper, we have studied fault-tolerant routing in BC networks under the condition that each node has at least one
fault-free edge. First, we have proven that the probability that all the incident edges of an arbitrary node become faulty in
Xn is extremely low (n becomes sufficient big). Then, we have given an O(n) algorithm to find a fault-free path of length at
most n+ 3⌈log2|F |⌉ + 1 between any two different nodes in Xn. In fact, we also for the first time provide an upper bound of
the fault diameter of all the bijective connection networks under the restricted condition. Since the family of BC networks
contains hypercubes, crossed cubes, Möbius cubes, locally twisted cubes, etc., all the results are appropriate for these cubes.
In fact, the performance of the algorithm in this paper is similar to that under the restricted faulty nodes in [5]. We also
have a conjecture that the smallest upper bound of the fault diameter of all the BC networks under the restricted faulty
edges would be n plus a constant. Due to the diversity of BC networks, this problem is significant but difficult to solve, which
deserves our further investigation.

Acknowledgements

The authors would like to thank the anonymous referees for their valuable comments, which are helpful to improve our
presentation. Thiswork is supported byNational Natural Science Foundation of China (60873047, 60970117, and 60703089),
Natural Science Foundation of Jiangsu Province (BK2008154), and Specialized Research Fund for the Doctoral Program of
Higher Education (20103201110018) and sponsored by Qing Lan Project.

References

[1] S. Abraham, K. Padmanabhan, The twisted cube topology formultiprocessors: a study in networks asymmetry, J. Parallel Distrib. Comput. 13 (1) (1991)
104–110.

[2] K. Efe, A variation on the hypercube with lower diameter, IEEE Trans. Comput. 40 (11) (1991) 1312–1316.
[3] A.-H. Esfahanian, Generalized measures of fault tolerance with application to n-cube networks, IEEE Trans. Comput. 38 (11) (1989) 1586–1591.
[4] J. Fan, L. He, BC interconnection networks and their properties, Chinese J. Comput. 26 (1) (2003) 84–90.
[5] J. Fan, X. Jia, X. Liu, S. Zhang, J. Yu, Efficient unicast in bijective connection networks with the restricted faulty node set, Inform. Sci. 181 (2011)

2303–2315.
[6] J. Fan, X. Jia, X. Lin, Optimal embeddings of paths with various lengths in twisted cubes, IEEE Trans. Parallel Distrib. Syst. 18 (4) (2007) 511–521.
[7] J. Fan, X. Lin, X. Jia, Optimal path embedding in crossed cubes, IEEE Trans. Parallel Distrib. Syst. 16 (12) (2005) 1190–1200.
[8] J. Fan, X. Jia, Edge-pancyclicity and path-embeddability of bijective connection graphs, Inform. Sci. 178 (2008) 340–351.
[9] J. Fan, X. Lin, The t/k-diagnosability of the BC graphs, IEEE Trans. Comput. 54 (2) (2005) 176–184.

[10] J.-S. Fu, Fault-tolerant cycle embedding in the hypercube, Parallel Comput. 29 (6) (2003) 821–832.
[11] J.-S. Fu, Longest fault-free paths in hypercubes with vertex faults, Inform. Sci. 176 (2006) 759–771.
[12] J.-S. Fu, Fault-free Hamiltonian cycles in twisted cubes with conditioal link faults, Theoret. Comput. Sci. 407 (1-3) (2008) 318–329.
[13] F. Harary, Conditional connectivity, Networks 13 (1983) 346–357.
[14] S.-Y. Hsieh, Fault-tolerant cycle embedding in the hypercube with more both faulty vertices and faulty edges, Parallel Comput. 32 (1) (2006) 84–91.
[15] S.-Y. Hsieh, C.-H. Chen, Pancyclicity on Möbius cubes with maximal edge faults, Parallel Comput. 30 (3) (2004) 407–421.
[16] S.-Y. Hsieh, T.-H. Shen, Edge-bipancyclicity of a hypercube with faulty vertices and edges, Discrete Appl. Math. 156 (10) (2008) 1802–1808.
[17] S.-Y. Hsieh, Y.-R. Cian, Conditional edge-fault Hamiltonicity of augmented cubes, Inform Sci. 180 (13) (2010) 2596–2617.

3450 J. Fan et al. / Theoretical Computer Science 412 (2011) 3440–3450

[18] S.-Y. Hsieh, Y.-S. Chen, Strongly diagnosable product networks under the comparison diagnosis model, IEEE Trans. Comput. 57 (6) (2008) 721–732.
[19] K. S. Hu, S.-S. Yeoh, C. Chen, L.-H. Hsu, Node-pancyclicity and Edge-pancyclicity of Hypercube Variants, Inf. Process. Lett. 102 (1) (2007) 1–7.
[20] W.T. Huang, Y.C. Chuang, J.J.M. Tan, L.H. Hsu, Fault-free Hamiltonian cycle in faulty Möbius cubes, Computacióny Sistemas 4 (2) (2000) 106–114.
[21] W.T. Huang, Y.C. Chuang, J.J.M. Tan, L.H. Hsu, Fault-tolerant Hamiltonicity of twisted cubes, J. Parallel Distrib. Comput. 62 (2002) 591–604.
[22] W.T. Huang, Y.C. Chuang, J.J.M. Tan, L.H. Hsu, On the fault-tolerant hamiltonicity of faulty crosses cubes, IEICE Trans. Fundam. E85-A (6) (2008)

1359–1370.
[23] H.-S. Hung, J.-S. Fu, G.-H. Chen, Fault-free Hamiltonian cycles in crossed cubes with conditional link faults, Inform. Sci. 177 (24) (2007) 5664–5674.
[24] Q.-P. Gu, S. Peng, Unicast in Hypercubes with large number of faulty nodes, IEEE Trans. Parallel Distrib. Syst. 10 (10) (1999) 964–975.
[25] S.M. Larson, P. Cull, The Möbius cubes, IEEE Trans. Comput. 44 (5) (1995) 647–659.
[26] M. Ma, G. Liu, X. Pan, Path embedding in faulty hypercubes, Appl. Math. Comput. 192 (1) (2007) 233–238.
[27] M. Ma, G. Liu, J.-M. Xu, Panconnectivity and edge-fault-tolerant pancyclicity of augmented cubes, Parallel Comput. 33 (1) (2007) 36–42.
[28] M. Ma, G. Liu, J.-M. Xu, Fault-tolerant embedding of paths in crossed cubes, Theoret. Comput. Sci. 407 (1–3) (2008) 110–116.
[29] C.-H. Tsai, S.-Y. Jiang, Path bipancyclicity of hypercubes, Inform Process. Lett. 101 (3) (2007) 93–97.
[30] J.-M. Xu, J.-W. Wang, W.-W. Wang, On Super and restricted connectivity of some interconnection networks, Ars Combin. 94 (2010) 25–32.
[31] X. Yang, D.J. Evans, G.M. Megson, The locally twisted cubes, Int. J. Comput. Math. 82 (4) (2005) 401–413.
[32] X. Yang, G.M. Megson, D.J. Evans, Locally twisted cubes are 4-pancyclic, Appl. Math. Lett. 17 (8) (2004) 919–925.

	An efficient fault-tolerant routing algorithm in bijective connection networks with restricted faulty edges
	Introduction
	Fault-tolerant routing and conditional connectivity
	Related work
	Our contributions

	Preliminaries
	Fault-tolerant routing algorithm
	Conclusions
	Acknowledgements
	References

