31 research outputs found

    ahydratedamorphousironoxidenanoparticleasactivewateroxidationcatalyst

    No full text
    由于传统化石燃料的不可再生性和使用过程中对环境的污染,近年通过太阳光驱动催化水分解制备氢气或CO2还原制备甲醇等高能化学燃料是人工光合作用制备太阳能燃料领域的研究重点.水的氧化反应是制备太阳能燃料的重要半反应,为质子或CO2的还原提供必需的质子和电子,开发基于非贵金属氧化物的高效水氧化催化剂是人工光合作用制备太阳能燃料的重要挑战之一.最近我们课题组的研究发现,无定形氧化钴作为水氧化催化剂时,其本征活性比结晶态的高出一个数量级.与氧化钴催化剂相比,铁基氧化物作为水氧化催化剂具有许多优点,比如成本低、环境友好、对动植物不产生生理毒性.基于此,本文探索了开发制备具有高催化活性的铁基氧化物作为水氧化催化剂.结果发现,氧化铁水氧化催化剂活性不但受其结晶度影响,还与其水合状态密切相关.水合氧化铁在进行室温真空干燥脱水处理后,在Ru(bpy)3^2+-Na2S2O8光催化水氧化体系中,其催化水氧化活性降低了一个数量级.热重分析、XRD和拉曼测试等结果表明,室温下进行脱水处理后,氧化铁基本不含有水分子的信号,其体相结构没有发生显著的变化.XRD和拉曼结果表明,催化水氧化测试后回收的氧化铁催化剂结构没有发生改变,表明该水合状态的氧化铁是水氧化过程中真实的催化剂成分,并不是充当前驱体的角色.基于此,我们进一步制备了尺寸较小且为水合状态的无定形氧化铁纳米粒子,后者在Ru(bpy)3^2+-Na2S2O8光催化水氧化体系中显示出极高的催化活性,TOF值高达9.3 s^-1,基于产生的氧气分子计算的光催化量子效率达到67%.该尺寸较小的水合状态氧化铁纳米粒子还可以有效地负载在SiO2表面进行催化水氧化反应,循环测试结果表明,负载的水合状态氧化铁纳米粒子连续进行三个催化水氧化循环测试,其活性未明显衰减,显示了较高的稳定性.该结果表明,未来设计铁基氧化物作为高活性的水氧化催化剂时,需要特别考虑其水合状态

    A hydrated amorphous iron oxide nanoparticle as active water oxidation catalyst

    No full text
    Developing efficient water oxidation catalysts (WOCs) with earth-abundant elements still remains a challenging task for artificial photosynthesis. Iron-based WOC is a promising candidate because it is economically cheap, little toxic and environmentally friendly. In this study, we found that the catalytic water oxidation activity on amorphous iron-based oxide/hydroxide (FeOx) can be decreased by an order of magnitude after the dehydration process at room temperature. Thermogravimetric analysis, XRD and Raman results indicated that the dehydration process of FeOx at room temperature causes the almost completely loss of water molecule with no bulk structural changes. Based on this finding, we prepared hydrated ultrasmall (ca. 2.2 nm) FeOx nanoparticles of amorphous feature, which turns out to be extremely active as WOC with turnover frequency (TOF) up to 9.3 s(-1) in the photocatalytic Ru(bpy)3(2+)-Na2S2O8 system. Our findings suggest that future design of active iron-based oxides as WOCs requires the consideration of their hydration status. (C) 2019, Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved

    ahydratedamorphousironoxidenanoparticleasactivewateroxidationcatalyst

    No full text
    由于传统化石燃料的不可再生性和使用过程中对环境的污染,近年通过太阳光驱动催化水分解制备氢气或CO2还原制备甲醇等高能化学燃料是人工光合作用制备太阳能燃料领域的研究重点.水的氧化反应是制备太阳能燃料的重要半反应,为质子或CO2的还原提供必需的质子和电子,开发基于非贵金属氧化物的高效水氧化催化剂是人工光合作用制备太阳能燃料的重要挑战之一.最近我们课题组的研究发现,无定形氧化钴作为水氧化催化剂时,其本征活性比结晶态的高出一个数量级.与氧化钴催化剂相比,铁基氧化物作为水氧化催化剂具有许多优点,比如成本低、环境友好、对动植物不产生生理毒性.基于此,本文探索了开发制备具有高催化活性的铁基氧化物作为水氧化催化剂.结果发现,氧化铁水氧化催化剂活性不但受其结晶度影响,还与其水合状态密切相关.水合氧化铁在进行室温真空干燥脱水处理后,在Ru(bpy)3^2+-Na2S2O8光催化水氧化体系中,其催化水氧化活性降低了一个数量级.热重分析、XRD和拉曼测试等结果表明,室温下进行脱水处理后,氧化铁基本不含有水分子的信号,其体相结构没有发生显著的变化.XRD和拉曼结果表明,催化水氧化测试后回收的氧化铁催化剂结构没有发生改变,表明该水合状态的氧化铁是水氧化过程中真实的催化剂成分,并不是充当前驱体的角色.基于此,我们进一步制备了尺寸较小且为水合状态的无定形氧化铁纳米粒子,后者在Ru(bpy)3^2+-Na2S2O8光催化水氧化体系中显示出极高的催化活性,TOF值高达9.3 s^-1,基于产生的氧气分子计算的光催化量子效率达到67%.该尺寸较小的水合状态氧化铁纳米粒子还可以有效地负载在SiO2表面进行催化水氧化反应,循环测试结果表明,负载的水合状态氧化铁纳米粒子连续进行三个催化水氧化循环测试,其活性未明显衰减,显示了较高的稳定性.该结果表明,未来设计铁基氧化物作为高活性的水氧化催化剂时,需要特别考虑其水合状态

    Raman Spectroscopy for the Competition of Hydrogen Bonds in Ternary (H2O–THF–DMSO) Aqueous Solutions

    No full text
    The effects of hydrogen bonds on the molecular structure of water-tetrahydrofuran (H2O–THF), water-dimethyl sulfoxide (H2O–DMSO), and water-tetrahydrofuran-dimethyl sulfoxide (H2O–THF–DMSO) in binary aqueous solutions and ternary aqueous solutions were studied using Raman spectroscopy. The results indicate that in the binary aqueous solution, the addition of THF and DMSO will generate hydrogen bonds with water molecules, resulting in changes in the peak positions of S=O bonds and C–O bonds. Compared with the binary aqueous solutions, the hydrogen bonds between DMSO and THF, and the hydrogen bonds between DMSO and H2O in the ternary aqueous solutions are competitive, and the hydrogen bond competition is susceptible to water content. In addition, the formation of hydrogen bonds will destroy the fully hydrogen-bonded water and make it change to the partially hydrogen-bonded water. By fitting the spectra into the three Gaussian components assigned to water molecules with different hydrogen bonding (HB) environments, these spectral features are interpreted by a mechanism that H2O in different solution systems has equal types of water molecules with similar HB degrees-fully hydrogen-bonded H2O (FHW) and partially hydrogen-bonded H2O (PHW). The ratio of the intensity transition from FHW to PHW is determined based on Gaussian fitting. Therefore, the variation of hydrogen bond competition can be supplemented by the intensity ratio of PHW/FHW ((IC2 + IC3)/IC1). This study provides an experimental basis for enriching the hydrogen bonding theory of multivariate aqueous solution systems

    Chiral sulfur compounds studied by Raman optical activity : Tert-butanesulfinamide and its precursor tert-butyl tert-butanethiosulfinate

    No full text
    Two chiral sulfur compounds, tert-butyl tert-butanethiosulfinate (1) and tert-butanesulfinamide (2), with inversion of configuration, have been studied by Raman optical activity (ROA) and electronic circular dichroism combined with density functional theory calculation. With the S-S linkage in 1, the couplings between the two tertiary carbon atoms often generate large ROA signals, whereas the tertiary carbon atom itself generally makes a large contribution to ROA signals in 2 for similar vibrational modes. The conformational dependence of ROA parameters provides probing conformation around the S-S bond from a new perspective. The simultaneous use of electronic circular dichroism and ROA is warranted to extract reliable conformational information. ROA provides a suitable candidate for the stereochemical study of chiral sulfur compounds, especially its capability of sensing the conformation around the S-S bond. Chirality 24:731-740, 2012

    A facile two-step method for fabrication of plate-like WO3 photoanode under mild conditions

    No full text
    Fabrication of photoelectrodes on a large-scale, with low-cost and high efficiency is a challenge for their practical application in photoelectrochemical (PEC) water splitting. In this work, a typical plate-like WO3 photoanode was fabricated with chemical etching of the as-prepared mixed tungsten-metal oxides (W-M-O, M = Cu, Zn or Al) by a reactive magnetron co-sputtering technique, which results in a greatly enhanced PEC performance for water oxidation in comparison with that obtained from a conventional magnetron sputtering method. The current approach is applicable for the fabrication of some other semiconductor photoelectrodes and is promising for the scaling up of applications for highly efficient solar energy conversion systems

    Highly Regio‑, Diastereo‑, and Enantioselective Mannich Reaction of Allylic Ketones and Cyclic Ketimines: Access to Chiral Benzosultam

    No full text
    An organocatalytic asymmetric Mannich reaction of allylic ketones with cyclic <i>N</i>-sulfonyl α-iminoester has been developed. By using a saccharide-derived chiral tertiary amino-thiourea catalyst, a range of allylic ketones and <i>N</i>-sulfonyl ketimines reacted smoothly to afford tetrasubstituted α-amino esters in high yields with good to excellent regio-, diastero-, and enantioselectivities

    The effect of water content of microbial material on the extinction performance of infrared band

    No full text
    In recent years, biotechnology has been widely used in production and living. The research on processing biomaterials and developing them into new functional types has also been gradually carried out. In this paper, the influence of water content of microbial material on the extinction properties of infrared band was studied from the aspects of composition and structure. The sample of moisture content of microbial was established. The qualitative law between the water content of microbial particle and its absorption property was given. The quantitative relationship between the water content of microbial particle and its scattering property was calculated. Under the conditions of strong attenuation, the optimal solution of microbial materials based on water content is designed. The results show that when the transmittance is less than 10%, the complex refractive index n of microbial particles can be changed within the range of 0 < Δn ≤ 0.072 by controlling the amount of intracellular bound water. The controllability and variability of complex refractive index n can improve the extinction performance of microbial materials in the infrared band by up to 50%

    Selective hydrodesulfurization of gasoline on Co/MoS2 +/- x catalyst: Effect of sulfur defects in MoS2 +/- x

    No full text
    To improve the hydrodesulfurization activity while to minimize the hydrogen consumption from the hydrogenation of olefins is of importance for the deep desulfurization of gasoline. Herein, a series of Co/MoS2 +/- x catalysts were prepared by impregnating Co-promoter to MoS2 +/- x (x < 0.06) with controllably varied S/Mo atomic ratio. The S/Mo atomic ratio of MoS2 +/- x in Co/MoS2 +/- x catalysts influences the catalytic performance of Co/MoS2 +/- x in simultaneously thiophene hydrodesulfurization (HDS) and cyclohexene hydrogenation (HYD) reactions. With decreasing the S/Mo atomic ratio in Co/MoS2 +/- x, the HDS selectivity factor (k(HDS)/k(HYD)) increases to two times (from 37 to 89), although the catalytic activities of HDS and HYD decrease due to the low content of CoMoS phase. The higher selectivity of Co/MoS2 +/- x with lower S/Mo atomic ratio could be well explained by larger size of sulfide crystallites exposed lower corner sites. Therefore, a high HDS selectivity catalyst could be developed by properly controlling the crystal size of sulfide crystallites. (C) 2016 Elsevier B.V. All rights reserved
    corecore