9 research outputs found

    Light-induced degradation in p-type gallium co-doped solar grade multicrystalline silicon wafers and solar cells

    No full text
    National Natural Science Foundation of China [61076056]This letter focuses on the evolution under illumination of the minority carrier lifetime and conversion efficiency of p-type gallium (Ga) co-doped solar grade multicrystalline silicon wafers and solar cells. We present experimental data regarding the concentration of boron-oxygen (B-O) defects in this silicon when subjected to illumination, and the concentration was found to depend on [B]-[P] rather than [B] or the net doping p(0)([B] + [Ga] - [P]). This result implies that the compensated B is unable to form the B-O defect. Minority carrier lifetime and EQE measurements at different degradation states indicate that the B-O defect and Fe-acceptor pairs are the two key centers contributed to LID in this material

    Luminescent properties of Sr2B2O5: Tm 3+, Na+ blue phosphor

    No full text
    A novel blue phosphor, Sr2B2O5: Tm 3+, Na+ for white light-emitting diodes (W-LEDs) was prepared by solid-state synthesis and its structure and luminescence properties were investigated. This phosphor can be effectively excited within the broad near ultraviolet (NUV) wavelength region, from 340 nm to 370 nm, and exhibits a satisfactory blue performance. The emission peaks are observed at 457 nm (blue) and 475 nm (blue), due to the respective transitions of 1D 2→3F4 and 1G 4→H6. Seven mole percent of doping concentration of Tm3+ was shown to be optimal. Concentration quenching occurs when Tm3+ concentration is beyond 7 mol%, its mechanism being explained by dipole-dipole interaction of Tm3+ and being confirmed by decay property measurements. We have made a deep analysis on the effect of charge compensation reagent on luminescence intensity. Good blue emissions with the CIE chromaticity coordinates (0.173, 0.165) could be achieved. Our results suggest that the Sr2B2O5: Tm3+, Na + phosphor is a potential blue-emitting material. ? 2013 Elsevier Ltd and Techna Group S.r.l.All rights reserved

    Actively Tunable “Single Peak/Broadband” Absorbent, Highly Sensitive Terahertz Smart Device Based on VO<sub>2</sub>

    No full text
    In recent years, the development of terahertz (THz) technology has attracted significant attention. Various tunable devices for THz waves (0.1 THz–10 THz) have been proposed, including devices that modulate the amplitude, polarization, phase, and absorption. Traditional metal materials are often faced with the problem of non-adjustment, so the designed terahertz devices play a single role and do not have multiple uses, which greatly limits their development. As an excellent phase change material, VO2’s properties can be transformed by external temperature stimulation, which provides new inspiration for the development of terahertz devices. To address these issues, this study innovatively combines metamaterials with phase change materials, leveraging their design flexibility and temperature-induced phase transition characteristics. We have designed a THz intelligent absorber that not only enables flexible switching between multiple functionalities but also achieves precise performance tuning through temperature stimulation. Furthermore, we have taken into consideration factors such as the polarization mode, environmental temperature, structural parameters, and incident angle, ensuring the device’s process tolerance and environmental adaptability. Additionally, by exploiting the principle of localized surface plasmon resonance (LSPR) accompanied by local field enhancement, we have monitored and analyzed the resonant process through electric field characterization. In summary, the innovative approach and superior performance of this structure provide broader insights and methods for THz device design, contributing to its theoretical research value. Moreover, the proposed absorber holds potential for practical applications in electromagnetic invisibility, shielding, modulation, and detection scenarios

    Effect of temperature on crystalline silicon solar cells processed from chemical and metallurgical route

    No full text
    Effect of temperature on monocrystalline and multicrystalline silicon solar cells processed from chemical (EG-Si) and metallurgical (SoGM-Si) routes was investigated in the range of 280-350 K. The temperature coefficients of important parameters related with the cell property were discussed. Experimental results indicate that the T-coefficient of conversion efficiency (η) of multicrystalline EG-Si cell processed from chemical is only 68% that of the monocrystalline EG-Si cell. Furthermore, the η of both types of SoGM-Si cells decrease much less than that of the EG-Si cells with the increase in temperature. Additionally, the recombination fraction, the minority carrier lifetime, the carrier mobility decrease and the band-gap shrinkage were also investigated to reveal the intrinsic temperature dependence mechanism. In order to confirm the results, we used numerical simulation software AMPS-1D (analysis of microelectronic and photonic structure in one dimension program) to simulate the temperature dependence of solar cell performances. The results of numerical simulation were basically consistent with the experimental results. ? 2014 Elsevier GmbH
    corecore