18 research outputs found

    New Atomic Decompositions of Weighted Local Hardy Spaces

    Full text link
    We introduce a new class of weighted local approximate atoms including classical weighted local atoms. Then we further obtain the weighted local approximate atomic decompositions of weighted local Hardy spaces hωp(Rn)h_{\omega} ^p(R^n) with 0<p≤10<p\leq 1 and weight ω∈A1(Rn)\omega\in A_1(R^n). As an application, we prove the boundedness of inhomogeneous Calder\'on-Zygmund operators on hωp(Rn)h_{\omega}^p(R^n) via weighted local approximate atoms and molecules

    Study of High Efficiency Flow Regulation of VIGV in Centrifugal Compressor

    Get PDF
    Variable inlet guide vane (VIGV) is used to control the mass flow and generate prewhirl in centrifugal compressors. Due to the tip clearance of the guide vanes and the defect of the traditional guide vane profiles, the mass flow regulation of VIGV is limited, resulting in a large waste of compressed gas. Two kinds of inlet flow channels were proposed to eliminate the influence of tip clearance. These structures were numerically investigated at different setting angles. The results show that the improved channels not only expand the range of mass flow regulation, but also reduce the power and increase the efficiency of the compressor. Ten kinds of guide vane profiles, including different thickness distribution, camber line profile, were selected to compare with the original one and with each other. In the premise of ensuring the performance of compressor, the best guide vane profile was selected. The results show that reducing the guide vane thickness, increasing the guide vane camber angle, and increasing the distance between the maximum camber position and the leading edge of guide vane can help expand the range of mass flow regulation. The achievement of this research can effectively improve the flow regulation ability of VIGV and the performance of compressor

    Study on Propulsion Performance of Three-dimensional Passive Swinging Hydrofoil on Wave Glider

    No full text

    Characteristics, structural styles and tectonic implications of Mesozoic-Cenozoic faults in the eastern Heilongjiang basins (NE China)

    No full text
    The Eastern Heilongjiang Basins (EHBs) are the assemblage of a series of meso-Cenozoic residual basins located in the northeastern corner of China. The deformation pattern of the EHBs has significant implications for the history of the Pacific Plate subduction beneath the Eurasia since the Late Mesozoic. In this paper, research on the characteristics and structural styles of the meso-Cenzoic faults in the EHBs has been conducted on the basis of a comprehensive analysis of field geology, drilling data and seismic reflection profiles. As a result, five different stages of the meso-Cenozoic faults in the EHBs have been recognized. These are in accordance with the time and relevant characteristics of fault movements, i.e. the early-stage of the Early Cretaceous normal fault, the early-stage of the Late Cretaceous thrust fault, the late-stage of the Late Cretaceous thrust fault, the Cenozoic synsedimentary normal fault and the late-stage Cenozoic shear fault. A regional geological section has been generated across the EHBs by linking four local seismic profiles together. A step-by-step reconstruction has been made to help better understand the Mesozoic-Cenozoic tectonic evolution of the EHBs. Two phases of extension (sifting) in the early Cretaceous Period and the Paleogene, respectively, are demonstrated to be interfered with two phases of regional uplift (compression) and erosion in the Late Cretaceous Period. The complicated development of multiple fault systems within the EHBs has reflected the evolution of a complex tectonic subduction of the Pacific Plate beneath the Eurasia since the Cretaceous Period

    Formation Mechanism and Restraining Measures of Burning-on of DZ22B Directionally Solidified Blade

    No full text
    The microstructure and chemical composition of the burning-on layer of the directionally solidified blade of the DZ22B superalloy were studied by means of SEM and EDS. The results show that the metal ceramic like sand defects are formed by a part of ceramic particles covered during the infiltration of metal to shell surface pores. The main component of the burning-on layer composes fused corundum, with some interfacial reaction products containing Cr2O3 and HfO2. According to the results of SEM analysis of blade cross section, the mechanism of the burning-on of the DZ22B directionally solidified blade is mainly caused by thermo mechanical permeation. A certain amount of burning-on inhibitor is added to the shell surface slurry, which significantly improves the penetration resistance of the fused corundum shell surface. The casting verifies that the surface of the DZ22B directionally solidified blade is smooth without burning-on, and the metallic luster on the blade surface is obviously observed

    MOESM1 of Cost-effective downstream processing of recombinantly produced pexiganan peptide and its antimicrobial activity

    No full text
    Additional file 1: Figure S1. Photographs of E. coli growth on agar plates containing of: (a) water; (b) DAMP4 protein; (c) DAMP4var-pexiganan protein; (d) synthetic pexiganan peptide; and (e) bio-produced pexiganan peptide. The concentration of all protein/peptide samples was 1 μg/mL. Figure S2. Photographs of E. coli growth on agar plates containing of: (a) water; (b) DAMP4 protein; (c) DAMP4var-pexiganan protein; (d) synthetic pexiganan peptide; and (e) bio-produced pexiganan peptide. The concentration of all protein/peptide samples was 2 μg/mL. Figure S3. Photographs of E. coli growth on agar plates containing of: (a) water; (b) DAMP4 protein; (c) DAMP4var-pexiganan protein; (d) synthetic pexiganan peptide; and (e) bio-produced pexiganan peptide. The concentration of all protein/peptide samples was 4 μg/mL. Figure S4. Photographs of E. coli growth on agar plates containing of: (a) water; (b) DAMP4 protein; (c) DAMP4var-pexiganan protein; (d) synthetic pexiganan peptide; and (e) bio-produced pexiganan peptide. The concentration of all protein/peptide samples was 8 μg/mL. Figure S5. Photographs of E. coli growth on agar plates containing of: (a) water; (b) DAMP4 protein; (c) DAMP4var-pexiganan protein; (d) synthetic pexiganan peptide; and (e) bio-produced pexiganan peptide. The concentration of all protein/peptide samples was 32 μg/mL
    corecore