14 research outputs found

    An Extended Kriging Method to Interpolate Near-Surface Soil Moisture Data Measured by Wireless Sensor Networks

    No full text
    In the practice of interpolating near-surface soil moisture measured by a wireless sensor network (WSN) grid, traditional Kriging methods with auxiliary variables, such as Co-kriging and Kriging with external drift (KED), cannot achieve satisfactory results because of the heterogeneity of soil moisture and its low correlation with the auxiliary variables. This study developed an Extended Kriging method to interpolate with the aid of remote sensing images. The underlying idea is to extend the traditional Kriging by introducing spectral variables, and operating on spatial and spectral combined space. The algorithm has been applied to WSN-measured soil moisture data in HiWATER campaign to generate daily maps from 10 June to 15 July 2012. For comparison, three traditional Kriging methods are applied: Ordinary Kriging (OK), which used WSN data only, Co-kriging and KED, both of which integrated remote sensing data as covariate. Visual inspections indicate that the result from Extended Kriging shows more spatial details than that of OK, Co-kriging, and KED. The Root Mean Square Error (RMSE) of Extended Kriging was found to be the smallest among the four interpolation results. This indicates that the proposed method has advantages in combining remote sensing information and ground measurements in soil moisture interpolation

    Accuracy Assessment on MODIS (V006), GLASS and MuSyQ Land-Surface Albedo Products: A Case Study in the Heihe River Basin, China

    No full text
    This study assessed accuracies of MCD43A3, Global Land-Surface Satellite (GLASS) and forthcoming Multi-source Data Synergized Quantitative Remote Sensing Production system (MuSyQ) albedos using ground observations and Huan Jing (HJ) data over the Heihe River Basin. MCD43A3 and MuSyQ albedos show similar high accuracies with identical root mean square errors (RMSE). Nevertheless, MuSyQ albedo is better correlated with ground measurements when sufficient valid observations are available or snow-free. The opposite happens when less than seven valid observations are available. GLASS albedo presents a larger RMSE than MCD43A3 and MuSyQ albedos in comparison with ground measurements. Over surfaces with smaller seasonal variations, MCD43A3 and MuSyQ albedos show smaller RMSEs than GLASS albedo in comparison with HJ albedo. However, for surfaces with larger temporal variations, both RMSEs and R2 of GLASS albedo are comparable with MCD43A3 and MuSyQ. Generally, MCD43A3 and MuSyQ albedos featured the same RMSEs of 0.034 and similar R2 (0.920 and 0.903, respectively), which are better than GLASS albedo (RMSE = 0.043, R2 = 0.787). However, when it comes to comparison with aggregated HJ albedo, MuSyQ and GLASS albedos are with lower RMSEs of 0.027 and 0.032 and higher R2 of 0.900 and 0.898 respectively than MCD43A3 (RMSE = 0.038, R2 = 0.836). Despite the limited geographic region of the study area, they still provide an important insight into the accuracies of three albedo products

    Upscaling in situ albedo for validation of coarse scale albedo product over heterogeneous surfaces

    No full text
    One of the essential steps for satellite albedo validation is upscaling in situ measurements to corresponding pixel scale over relatively heterogeneous land surfaces. Although the multi-scale validation strategy is applicable for heterogeneous surfaces, the calibration of the high-resolution imagery during upscaling process is never perfect, and thus the upscaling results suffer from errors. The regression-kriging (RK) technique can compensate the calibration part by applying kriging to upscale residuals and produce more accurate upscaling results. In this paper, in situ measurements and high spatial resolution albedo imagery combined with RK technique was proposed. This method is illustrated by upscaling surface albedo from in situ measurements scale to the coarse pixel scale in the core experimental area of HiWATER, where 17 WSN nodes were deployed at heterogeneous area. The upscaling results of this method were compared with the upscaling results from multi-scale strategy. The results show that the upscaling method based on in situ measurements and high-resolution imagery combined with RK technique can capture the spatial characteristics of surface albedo better. Further, an attempt was made to expand this method in time series. Finally, a preliminary validation of the Moderate Resolution Imaging Spectroradiometer albedo product was performed as the tentative application

    Optimal Nodes Selectiveness from WSN to Fit Field Scale Albedo Observation and Validation in Long Time Series in the Foci Experiment Areas, Heihe

    No full text
    To evaluate and improve the quality of land surface albedo products, validation with ground measurements of albedo is crucial over the spatially and temporally heterogeneous land surface. One of the essential steps for satellite albedo product validation is coarse scale observation technique development with long time ground-based measurements. In this paper, the optimal nodes were selected from the wireless sensor network (WSN) to perform observation at large scale and in longer time series for validation of albedo products. The relative difference is used to analyze the spatiotemporal representativeness of each node. The random combination method is used to assess the number of required sites (NRS) and then to identify the most representative combination (MRC). On this basis, an upscaling transform function with different weights for each node in the MRC, which are calculated with the ordinary least squares (OLS) linear regression method, is used to upscale WSN node albedo from point scale to the field scale. This method is illustrated by selecting the optimal nodes and upscaling surface albedo from point observation to the field scale in the Heihe River basin, China. Primary findings are: (a) The method of reducing the number of observations without significant loss of information about surface albedo at field scale is feasible and effective; (b) When only few sensors are available, the most representative locations in time and space should be the first priority; when a number of sensors are available in the heterogeneous land surface, it is preferable to install them in different land surface, rather than the most representative locations; (c) The most representative combination (MRC) combined with the upscaling weight coefficients can give a robust estimate of the field mean surface albedo. These efforts based on ground albedo observations promote the chance to use point information for validation of coarse scale albedo products. Moreover, a preliminary validation of the MODIS (Moderate Resolution Imaging Spectroradiometer) albedo product was performed as the tentative application for upscaling predictions

    Simulation and Analysis of the Topographic Effects on Snow-Free Albedo over Rugged Terrain

    No full text
    Topography complicates the modeling and retrieval of land surface albedo due to shadow effects and the redistribution of incident radiation. Neglecting topographic effects may lead to a significant bias when estimating land surface albedo over a single slope. However, for rugged terrain, a comprehensive and systematic investigation of topographic effects on land surface albedo is currently ongoing. Accurately estimating topographic effects on land surface albedo over a rugged terrain presents a challenge in remote sensing modeling and applications. In this paper, we focused on the development of a simplified estimation method for snow-free albedo over a rugged terrain at a 1-km scale based on a 30-m fine-scale digital elevation model (DEM). The proposed method was compared with the radiosity approach based on simulated and real DEMs. The results of the comparison showed that the proposed method provided adequate computational efficiency and satisfactory accuracy simultaneously. Then, the topographic effects on snow-free albedo were quantitatively investigated and interpreted by considering the mean slope, subpixel aspect distribution, solar zenith angle, and solar azimuth angle. The results showed that the more rugged the terrain and the larger the solar illumination angle, the more intense the topographic effects were on black-sky albedo (BSA). The maximum absolute deviation (MAD) and the maximum relative deviation (MRD) of the BSA over a rugged terrain reached 0.28 and 85%, respectively, when the SZA was 60° for different terrains. Topographic effects varied with the mean slope, subpixel aspect distribution, SZA and SAA, which should not be neglected when modeling albedo

    Development of a High Resolution BRDF/Albedo Product by Fusing Airborne CASI Reflectance with MODIS Daily Reflectance in the Oasis Area of the Heihe River Basin, China

    No full text
    A land-cover-based linear BRDF (bi-directional reflectance distribution function) unmixing (LLBU) algorithm based on the kernel-driven model is proposed to combine the compact airborne spectrographic imager (CASI) reflectance with the moderate resolution imaging spectroradiometer (MODIS) daily reflectance product to derive the BRDF/albedo of the two sensors simultaneously in the foci experimental area (FEA) of the Heihe Watershed Allied Telemetry Experimental Research (HiWATER), which was carried out in the Heihe River basin, China. For each land cover type, an archetypal BRDF, which characterizes the shape of its anisotropic reflectance, is extracted by linearly unmixing from the MODIS reflectance with the assistance of a high-resolution classification map. The isotropic coefficients accounting for the differences within a class are derived from the CASI reflectance. The BRDF is finally determined by the archetypal BRDF and the corresponding isotropic coefficients. Direct comparisons of the cropland archetypal BRDF and CASI albedo with in situ measurements show good agreement. An indirect validation which compares retrieved BRDF/albedo with that of the MCD43A1 standard product issued by NASA and aggregated CASI albedo also suggests reasonable reliability. LLBU has potential to retrieve the high spatial resolution BRDF/albedo product for airborne and spaceborne sensors which have inadequate angular samplings. In addition, it can shorten the timescale for coarse spatial resolution product like MODIS

    A web-based land surface remote sensing products validation system (LAPVAS): application to albedo product

    No full text
    Quantitative remote sensing product (QRSP) validation is a complex process to assess the accuracy and uncertainty independently using reference data with multiple land cover types and long-time series. A web-based system named as LAnd surface remote sensing Product VAlidation system (LAPVAS) is described in this paper, which is used to implement the QRSPs validation process automatically. The LAPAVS has two subsystems, the Validation Databases Subsystem and the Accuracy Evaluation Subsystem. Three functions have been implemented by the two subsystems for a comprehensive QRSP validation: (1) a standardized processing of reference data and storage of these data in validation databases; (2) a consistent and comprehensive validation procedure to assess the QRSPs’ accuracy and uncertainty; and (3) a visual process customization tool with which the users can register new validation data, host new reference data, and readjust the validation workflows for the QRSP accuracy assessment. In LAPVAS, more than 100 GB of reference data warehoused in validation databases for 13 types of QRSPs’ validation. One of the key QRSPs, land surface albedo, is selected as an example to illustrate the application of LAPVAS. It is demonstrated that the LAPVAS has a good performance in the land surface remote sensing product validation
    corecore