134 research outputs found
Locality Preserving Projections for Grassmann manifold
Learning on Grassmann manifold has become popular in many computer vision
tasks, with the strong capability to extract discriminative information for
imagesets and videos. However, such learning algorithms particularly on
high-dimensional Grassmann manifold always involve with significantly high
computational cost, which seriously limits the applicability of learning on
Grassmann manifold in more wide areas. In this research, we propose an
unsupervised dimensionality reduction algorithm on Grassmann manifold based on
the Locality Preserving Projections (LPP) criterion. LPP is a commonly used
dimensionality reduction algorithm for vector-valued data, aiming to preserve
local structure of data in the dimension-reduced space. The strategy is to
construct a mapping from higher dimensional Grassmann manifold into the one in
a relative low-dimensional with more discriminative capability. The proposed
method can be optimized as a basic eigenvalue problem. The performance of our
proposed method is assessed on several classification and clustering tasks and
the experimental results show its clear advantages over other Grassmann based
algorithms.Comment: Accepted by IJCAI 201
Research on Word Segmentation for Chinese Sign Language
PACLIC 20 / Wuhan, China / 1-3 November, 200
- …