48 research outputs found

    Microstructural evolution of the coexistence for spinodal decomposition and ordering in Fe-23Al alloy during aging

    Get PDF
    The microstructural evolution of the coexistence ofspinodal decomposition and ordering ischaracterized by metallographic microscopy andtransmission electron microscopy in aged Fe-23Al(i.e. Fe-23at%Al) alloy. This paper discusses aphase transition mechanism of the microstructureevolution. The obtained results indicate that the asquenchedFe-23Al alloys with equiaxed grain sizeof about 500μm comprise two kinds of the orderedphase in nano-scale, i.e., B2-FeAl and DO3-Fe 3Alphases. The average size of B2-FeAl orderingphases is about 15nm, while the size of DO3-Fe 3Alordering phases is extreme fine in the as- quenchedFe-23Al alloys. The as-quenched Fe-23Al alloypresents characteristics of the coexistence ofspinodal decomposition and ordering during thesubsequent age ing at 565°C and 520°C. Thedomain size of B2-FeAl ordered phase rapidlyincreases while the one of DO3-Fe 3Al orderedphase slowly develops with the increase in agingtime/with increased ageing time. A conclusion isreached that the coarsening process of both B2-FeAl and DO3-Fe 3Al ordered phase is controlledby the spinodal decomposition mechanism

    Preparation, characterization and targeting of micronized 10-hydroxycamptothecin-loaded folate-conjugated human serum albumin nanoparticles to cancer cells

    Get PDF
    Qingyong Li, Chen Liu, Xiuhua Zhao, Yuangang Zu, Ying Wang, Baoyou Zhang, Dongmei Zhao, Qi Zhao, Lin Su, Yang Gao, Baihe SunKey Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, Heilongjiang, People's Republic of ChinaBackground: The purpose of this study was to develop a method for targeted delivery of 10-hydroxycamptothecin (HCPT)-loaded nanoparticles (NPs) to cancer cells.Methods: We first used a supercritical antisolvent process to prepare micronized HCPT (nHCPT), and then folate-conjugated human serum albumin (HSA) nHCPT-loaded NPs (FA-HSA-nHCPT-NPs) were prepared using a NP-coated method combined with a desolvation technique. The amount of folate conjugation was 16 µg · mg-1 HSA.Results: The particle size of the spherical nHCPT microparticles obtained was 118.5 ± 6.6 nm. The particle size and zeta potential of the FA-HSA-nHCPT-NPs were 233.9 ± 1.2 nm and -25.23 ± 2.98 mV, respectively. The FA-HSA-nHCPT-NPs exhibited a smooth surface and a distinct spherical shape, and the results of differential scanning calorimetry and X-ray diffraction indicated that the FA-HSA-nHCPT-NPs presented in a nanostructured amorphous state. The FA-HSA-nHCPT-NPs showed sustained-release characteristics for 120 hours in vitro, with a drug-loading content of 7.3% and an encapsulating efficiency of 79.1%.Conclusion: The FA-NPs were effective delivery systems for uptake by SGC7901 cells compared with folate-free NPs. These results suggest that a NP-coated method combined with a desolvation technique is effective for preparing NPs with drugs having poor solubility in water and most organic solvents, using albumin as the wall material. FA-HSA-NPs are a stable delivery system and have the potential for targeted delivery of anticancer drugs.Keywords: nanoparticle-coated, desolvation technique, 10-hydroxycamptothecin, human serum albumin, folate, targeted delivery&nbsp

    Preparation and Physicochemical Properties of 10-Hydroxycamptothecin (HCPT) Nanoparticles by Supercritical Antisolvent (SAS) Process

    Get PDF
    The goal of the present work was to study the feasibility of 10-hydroxycamptothecin (HCPT) nanoparticle preparation using supercritical antisolvent (SAS) precipitation. The influences of various experimental factors on the mean particle size (MPS) of HCPT nanoparticles were investigated. The optimum micronization conditions are determined as follows: HCPT solution concentration 0.5 mg/mL, the flow rate ratio of CO2 and HCPT solution 19.55, precipitation temperature 35 °C and precipitation pressure 20 MPa. Under the optimum conditions, HCPT nanoparticles with a MPS of 180 ± 20.3 nm were obtained. Moreover, the HCPT nanoparticles obtained were characterized by Scanning electron microscopy, Dynamic light scattering, Fourier-transform infrared spectroscopy, High performance liquid chromatography-mass spectrometry, X-ray diffraction and Differential scanning calorimetry analyses. The physicochemical characterization results showed that the SAS process had not induced degradation of HCPT. Finally, the dissolution rates of HCPT nanoparticles were investigated and the results proved that there is a significant increase in dissolution rate compared to unprocessed HCPT

    Experimental Research on NO<sub>2</sub> Viscosity and Absorption for (1-Ethyl-3-methylimidazolium Trifluoroacetate + Triethanolamine) Binary Mixtures

    No full text
    The viscosity (9.34–405.92 mPa·s) and absorption capacity (0.4394–1.0562 g·g−1) of (1-ethyl-3-methylidazolium trifluoroacetate + triethanolamine) binary blends atmospheric pressure in the temperature range of 303.15–343.15 K and at different mole fractions of [EMIM] [TFA] have been carried out. The molar fraction of [EMIM] [TFA] dependence of the viscosity and absorption capacity was demonstrated. The addition of a small amount of [EMIM] [TFA] into TEA led to rapidly decreased rates of binary blends’ viscosity and absorption capacity. However, the viscosity and absorption of binary blends did not decrease significantly when [EMIM] [TFA] was increased to a specific value. Compared with the molar fraction of the solution, the temperature had no obvious effect on viscosity and absorption capacity. By modeling and optimizing the ratio of viscosity and absorption capacity of ([EMIM] [TFA] + TEA), it is proven that when the mole fraction of [EMIM] [TFA] is 0.58, ([EMIM] [TFA] + TEA) has the best viscosity and absorption capacity at the same time. In addition, at 303.15 K, ([EMIM] [TFA] + TEA) was absorbed and desorbed six times, the absorption slightly decreased, and the desorption increased

    Boosting the Rate and Cycling Performance of β-LixV2O5 Nanorods for Li Ion Battery by Electrode Surface Decoration

    No full text
    The β-phase lithium vanadium oxide bronze (β-LixV2O5) with high theoretic specific capacity up to 440 mAh g-1 is considered as promising cathode materials, however, their practical application is hindered by its poor ionic and electronic conductivity, resulting in unsatisfied cyclic stability and rate capability. Herein, we report the surface decoration of β-LixV2O5 cathode using both reduced oxide graphene and ionic conductor LaPO4, which significantly promotes the electronic transfer and Li+ diffusion rate, respectively. As a result, the rGO/LaPO4/LixV2O5 composite exhibits excellent electrochemical performance in terms of high reversible specific capacity of 275.7 mAh g-1 with high capacity retention of 84.1% after 100 cycles at a current density of 60 mA g-1, and acceptable specific capacity of 170.3 mAh g-1 at high current density of 400 mA g-1. The cycled electrode is also analyzed by electrochemical impedance spectroscopy, ex-situ X-ray diffraction and scanning electron microscope, providing further insights into the improvement of electrochemical performance. Our results provide an effective approach to boost the electrochemical properties of lithium vanadates for practical application in lithium ion batteries

    Experimental Study of the Effect of Axial Load on Stress Wave Characteristics of Rock Bolts Using a Non-Destructive Testing Method

    No full text
    Traditional rock bolt inspection methods are destructive and limited. Non-destructive testing (NDT) based on the stress wave method can realize a fast and convenient quality detection of rock bolts. To verify the effectiveness of the stress wave-based anchor NDT method, a multi-functional experimental bench was customized on the basis of a bench-pull tension testing machine. Stress waves can be generated by applying axial loads on rock bolts and then collected using a non-destructive tester. The VMD decomposition method and Hilbert–Huang signal processing method were used to filter and analyze the stress wave signal. The influence of the axial loads of different magnitudes on the stress wave was then investigated. The results showed that the stress wave characteristics of the rock bolt changed with the increase in the axial load. It was found, correspondingly, that the stress wave amplitude decreased gradually and there was a trend of rapid decrease at the beginning and then a slower decline. The change in the time domain amplitude of the stress wave after noise reduction can be used to determine the magnitude of the load on the rock bolt during the elastic deformation stage. Further studies showed that the axial load on rock bolts inversely calculated by the stress-wave time-domain amplitude method is accurate and reliable, which can be validated by comparing the data measured by the rock bolt dynamometer. The research results shed light on the development of the NDT technology on rock bolt inspection, and make this testing method more convenient, efficient, and accurate

    Terrestrial gamma-ray flashes as the high-energy effect of tropospheric thunderstorms in near-Earth space

    Get PDF
    Thunderstorms in the troposphere produce lightning flashes and cause charge transfer of different strength at varying spatial and temporal scales, leading to various forms of transient electromagnetic effects in the vast space above thunderstorms. In particular, normal intra-cloud (IC) lightning can generate ionizing hard X-rays and gamma rays, forming Terrestrial Gamma-ray Flashes (TGFs). We briefly summarize the progress in TGF studies that has been achieved in the past decade based on multiple space-borne platforms: (1) TGFs are usually associated with the upward negative leader during the initial stage of IC flashes and are often accompanied by relatively strong IC discharge with high peak current and large charge transfer, which is called the energetic IC pulse (EIP); (2) based on the characteristics of TGF-related radio-frequency signals, we can develop a remote sensing approach with ground-based measurements of lightning signals, thereby greatly enriching the investigation dataset of TGFs and parent thunderstorms; (3) till date, no unified mechanism for TGF production has been developed due to a lack of effective observation with respect to the source region. Thermal runaway breakdown and relativistic runaway electron breakdown are the two mainstream theories to explain TGF production. Compared with transient luminous events (TLEs; e.g., red sprites, gigantic jets, and blue jets) as the lightning-induced dielectric breakdown in the mesosphere, studies on TGFs, in terms of both observations and theoretical interpretation, lag behind the research in Europe and the USA. However, along with China's latest progress in space detection technology (particularly the implementation of the Insight Hard X-ray Modulation Telescope (Insight-HXMT) and the Gravitational-wave high-energy Electromagnetic Counterpart All-sky Monitor (GECAM)), researchers in China desire to make steady progress in the field of TGF studies through continuous efforts in developing ground-based lightning detection techniques. © 2020.Peer reviewe

    Loop-Mediated Isothermal Amplification (LAMP) for the Rapid and Sensitive Detection of Alternaria alternata (Fr.) Keissl in Apple Alternaria Blotch Disease with Aapg-1 Encoding the Endopolygalacturonase

    No full text
    Apple Alternaria blotch disease, caused by Alternaria alternata (Fr.) Keissl, is one of the most famous leaf diseases. When the disease is prevalent, it causes leaf abscission and influences the formation of flower buds and photosynthesis. Therefore, a simple, rapid, high-specificity and sensitivity method for monitoring infected leaves at early developmental stages is urgently needed, so that the occurrence and expansion of A. alternata can be controlled in time. In our research, a rapid, specific and efficient loop-mediated isothermal amplification (LAMP) method was developed to detect A. alternata within 60 min. Six primers of LAMP detection can only specifically amplify the aapg-1 gene in A. alternata but not in four other important fungi in apples. The aapg-1 gene encodes endopolygalacturonase in A. alternata, and there are significant differences among different species. Thus, it was applied as the target for LAMP primers. Compared to conventional PCR detection, our LAMP method had the same sensitivity as that of detecting as little as 1 fg of pure genomic DNA of A. alternata. When leaves were inoculated with A. alternata conidia, LAMP detected 1 &times; 102 conidia/mL as the minimum concentration. However, the traditional tissue isolation and identification method only isolated A. alternata from leaves inoculated with 1 &times; 105 and 1 &times; 106 conidia/mL, indicating that the LAMP method was more sensitive than the traditional tissue isolation and identification method for A. alternata before symptoms. Further tests also indicated that LAMP detection was more accurate and sensitive than the traditional tissue isolation and identification method for A. alternata in leaves with the Alternaria blotch symptom collected from the field. Our results showed that the LAMP-targeting the aapg-1 gene has the advantages of high sensitivity, specificity and simplicity and can be used for rapid detection and early monitoring of A. alternata in the field. LAMP is instructive for us to effectively prevent and control apple Alternaria blotch disease
    corecore