16 research outputs found
Thruster fault identification method for autonomous underwater vehicle using peak region energy and least square grey relational grade
A novel thruster fault identification method for autonomous underwater vehicle is presented in this article. It uses the proposed peak region energy method to extract fault feature and uses the proposed least square grey relational grade method to estimate fault degree. The peak region energy method is developed from fusion feature modulus maximum method. It applies the fusion feature modulus maximum method to get fusion feature and then regards the maximum of peak region energy in the convolution operation results of fusion feature as fault feature. The least square grey relational grade method is developed from grey relational analysis algorithm. It determines the fault degree interval by the grey relational analysis algorithm and then estimates fault degree in the interval by least square algorithm. Pool experiments of the experimental prototype are conducted to verify the effectiveness of the proposed methods. The experimental results show that the fault feature extracted by the peak region energy method is monotonic to fault degree while the one extracted by the fusion feature modulus maximum method is not. The least square grey relational grade method can further get an estimation result between adjacent standard fault degrees while the estimation result of the grey relational analysis algorithm is just one of the standard fault degrees
Virtual tracking control of underwater vehicles based on error injection and adaptive gain
Abstract An improved virtual tracking control scheme is proposed based on error injection and adaptive gain for underwater vehicles in the presence of a large initial tracking error and external disturbances. To relieve the effect caused by a large initial tracking error, the developed control scheme is achieved based on two closedâloop systems. Specifically, a virtual closedâloop system is constructed based on an approximate dynamic model of an underwater vehicle, while an actual closedâloop system is built with a real underwater vehicle. Firstly, in order to improve the tracking precision of the virtual tracking control scheme, an auxiliary variable produced by a firstâorder filter is injected into a virtual tracking error in the virtual closedâloop system. And then, the virtual trajectory provided by the virtual closedâloop system is followed by the actual closedâloop system. In the actual closedâloop system, a modified sliding mode surface is designed to achieve the finiteâtime stability, while the control gains can be onâline adjusted based on the tracking performance. Finally, the effectiveness and feasibility of the proposed control scheme are demonstrated by case studies on an underwater vehicle subject to different external disturbances
A Transferable Thruster Fault Diagnosis Approach for Autonomous Underwater Vehicle under Different Working Conditions with Insufficient Labeled Training Data
Existing thruster fault diagnosis methods for AUV (autonomous underwater vehicle) usually need sufficient labeled training data. However, it is unrealistic to get sufficient labeled training data for each working condition in practice. Based on this challenge, a transferable thruster fault diagnosis approach is proposed. In the approach, an IPSE (instantaneous power spectrum entropy) and a STNED (signal-to-noise energy difference) are added to SPWVD (smoothed pseudo Wigner-Ville distribution) to identify time and frequency boundaries of the local region in the time-frequency power spectrum caused by thruster fault, forming a TFE (time-frequency energy) method for feature extraction. In addition, the RCQFFV (relative change quantity of the fault feature value), an MSN (multiple scale normalization) and a LSP (least square prediction) are added to SVDD (support vector data description) to align distributions of fault samples, contributing a TSVDD (transferable SVDD) for classification of fault samples. The experimental results of a prototype AUV indicate that the fault feature is monotonic to the percentage of thrust loss for the proposed TFE but not for the SPWVD. The TSVDD has a higher overall classification accuracy in comparison to conventional SVDD under working conditions with no labeled training data
Online PID Tuning Strategy for Hydraulic Servo Control Systems via SAC-Based Deep Reinforcement Learning
Proportionalâintegralâderivative (PID) control is the most common control technique used in hydraulic servo control systems. However, the nonlinearity and uncertainty of the hydraulic system make it challenging for PID control to achieve high-precision control. This paper proposes a novel control strategy that combines the soft actor-critic (SAC) reinforcement learning algorithm with the PID method to address this issue. The proposed control strategy consists of an upper-level controller based on the SAC algorithm and a lower-level controller based on the PID control method. The upper-level controller continuously tunes the control parameters of the lower-level controller based on the tracking error and system status. The lower-level controller performs real-time control for the hydraulic servo system with a control frequency 10 times higher than the upper controllers. Simulation experiments demonstrate that the proposed SAC-PID control strategy can effectively address disturbances and achieve high precision control for hydraulic servo control systems in uncertain working conditions compared with PID and fuzzy PID control methods. Therefore, the proposed control strategy offers a promising approach to improving the tracking performance of hydraulic servo systems
Fatigue and Corrosion Fatigue of 18Ni Maraging Steel
This study focused on the fatigue and corrosion fatigue of maraging steel 18Ni (250). The 18Ni (250) samples were tested for axial fatigue in air and 3.5% NaCl solution. The effects of loading frequency and stress ratio on the fatigue strength of 18Ni (250) were studied. in air, the loading frequency was 10 Hz, and the stress ratio was 0.5. however, three loading methods were used in the 3.5% NaCl solution: (i) the loading frequency of 1 Hz and stress ratio of 0.5; (ii) the loading frequency of 1 Hz and stress ratio 0.1, and (iii) the loading frequency 5 Hz and stress ratio 0.5. The corrosion fatigue strength of samples in the 3.5% NaCl solution was 63.3% lower than that of the samples in air. The fractures in the samples were observed after the test
Fatigue and Corrosion Fatigue of 18Ni Maraging Steel
This study focused on the fatigue and corrosion fatigue of maraging steel 18Ni (250). The 18Ni (250) samples were tested for axial fatigue in air and 3.5% NaCl solution. The effects of loading frequency and stress ratio on the fatigue strength of 18Ni (250) were studied. In air, the loading frequency was 10 Hz, and the stress ratio was 0.5. However, three loading methods were used in the 3.5% NaCl solution: (i) the loading frequency of 1 Hz and stress ratio of 0.5; (ii) the loading frequency of 1 Hz and stress ratio 0.1, and (iii) the loading frequency 5 Hz and stress ratio 0.5. The corrosion fatigue strength of samples in the 3.5% NaCl solution was 63.3% lower than that of the samples in air. The fractures in the samples were observed after the test