2,703 research outputs found

    Design and Synthesis of Novel Anticancer Peptide Nanoparticles

    Get PDF
    Cancer has now become a common disease affecting human health. Existing cancer treatment drugs can no longer meet the growing needs of cancer patients, and the emergence of anticancer drug resistance has exacerbated this phenomenon. By designing and synthesizing new anticancer peptide nanoparticles and studying their anticancer effects, new strategies for cancer treatment may be obtained. Novel anticancer peptides are synthesized by adding basic amino acids and solid-phase synthesis technology, and their structural information is determined by mass spectrometry. Nanoparticles of anticancer peptide were synthesized by nano-self-assembly technology. Two novel anticancer peptides exhibited anticancer activity, one of which was assembled into nanoparticles. The theoretical isoelectric points of the modified SZG3 and SZG5 are all greater than physiological pH, and will be positively charged under physiological conditions. The estimated half-life of SZG3 and SZG5 is significantly extended (30h), which is beneficial to increase the efficacy and reduce toxic and side effects. SZG3 and SZG5 have a good inhibitory effect on tumor cells and have low toxicity to normal cells. Keywords: anticancer peptide, study, design, cancer, nanoparticles&nbsp

    Graphene oxide nanoparticles for enhanced photothermal cancer cell therapy under the irradiation of a femtosecond laser beam

    Full text link
    Nano-sized graphene and graphene oxide (GO) are promising for biomedical applications, such as drug delivery and photothermal therapy of cancer. It is observed in thiswork that the ultrafast reduction of GO nanoparticles (GONs)with a femtosecond laser beam creates extensive microbubbling. To understand the surface chemistry of GONs on the microbubble formation, the GONs were reduced to remove most of the oxygen-containing groups to get reduced GONs (rGONs). Microbubbling was not observed when the rGONs were irradiated by the laser. The instant collapse of the microbubbles may produce microcavitation effect that brings about localized mechanical damage. To understand the potential applications of this phenomenon, cancer cells labeled with GONs or rGONs were irradiated with the laser. Interestingly, the microbubbling effect greatly facilitated the destruction of cancer cells. When microbubbles were produced, the effective laser power was reduced to less than half of what is needed when microbubbling is absent. This finding will contribute to the safe application of femtosecond laser in the medical area by taking advantage of the ultrafast reduction of GONs. It may also find other important applications that need highly localized microcavitation effects

    3,6,8-Tribromo-7-ethyl­amino-4-methyl-2H-chromen-2-one

    Get PDF
    In the title mol­ecule, C12H10Br3NO2, the 2H-chromen ring is essentially planar (r.m.s. deviation = 0.022 Å) with the ethyl­amino group oriented at 13.9 (5)° with respect to the ring. The mol­ecular structure is stabilized by intra­molecular N—H⋯Br and C—H⋯Br interactions

    Virtual Scenes Construction Promotes Traditional Chinese Art Preservation

    Get PDF
    Chinese traditional opera is a valuable and fascinating heritage assert in the world as one of the most representative folk art in Chinese history. Its characteristic of ‘suppositionality’ in stage scenery provides a possibility of preservation of cultural heritage by digitization means, e.g., 3D Animation and Virtual Reality-based art show. In this novel digitization art form, the construction of virtual scenes is an important pillar--variety of created models should be accommodated to provide a vivid performance stage, including stage props and background. However, the generation of scenes based on traditional manual 3D virtual props modelling method is a tedious and strenuous task. In this paper, a novel shadow puppetry virtual stage scenes construction approach based on semantic and prior probability is proposed for the generation of compositional virtual scenes. First, primitive models based on semantics text segmentation and retrieval is provided for scene composition; and then, scene placement algorithm based on prior probability is conducive to assign these 3D models within virtual scene. This method is tested by generating the virtual performance stage for our shadow puppetry prototype system, within which various traditional art-specific 3D models are assembled. Its ease of use can assist artists to create visually plausible virtual stage without professional scene modelling skill. The user study indicates our approach’s effectiveness and its efficiency

    Comparative Cytogenetics Analysis of Chlamys farreri, Patinopecten yessoensis, and Argopecten irradians with C0t-1 DNA by Fluorescence In Situ Hybridization

    Get PDF
    The chromosomes of Chlamys farreri, Patinopecten yessoensis, and Argopecten irradians were studied by FISH using C. farreri C0t-1 DNA probes. The results showed that C0t-1 DNA signals spread on all chromosomes in the three scallops, whereas signal density and intensity were different strikingly. Clustering brighter signals presented in the centromeric and telomeric regions of most C. farreri chromosomes, and in the centromeric or pericentromeric regions of several P. yessoensis chromosomes. Comparative analysis of the mapping indicated a relatively higher homology in the repetitive DNA sequences of the genome between C. farreri and P. yessoensis than that between C. farreri and A. irradians. In addition, FISH showed that the distribution of C0t-1 DNA clustering signals in C. farreri displayed completely similar signal bands between homologous chromosomes. Based on the C0t-1 DNA fluorescent bands, a more exact karyotype of C. farreri has been obtained. In this study, the comparative analysis based on C0t-1 DNA provides a new insight into the chromosomal reconstructions during the evolution process, and it is helpful for understanding an important source of genomic diversity, species relationships, and genome evolution

    Children's Early Educational Game under the Background of Chinese Three Kingdoms Culture - To Borrow Arrows with Thatched Boats

    Get PDF
    Recent research has shown that children's strategic ability can be improved with game. To improve strategic ability, motor coordination ability and the understanding of historical knowledge, we design an ability training game - to borrow arrows with thatched boats. In order to improve children's learning efficiency, we use deep motion perception technology as a human-computer interaction tool. Our system can allow children to control the movement of boats and interact with virtual objects in the virtual environment through hand-gesture. We can provide some strategic options, such as weather, equipment, etc. Under this new mode of educational game, children's strategic and motor coordination abilities are improved, and their understanding of historical knowledge can be also enhanced

    Near-Term Quantum Computing Techniques: Variational Quantum Algorithms, Error Mitigation, Circuit Compilation, Benchmarking and Classical Simulation

    Full text link
    Quantum computing is a game-changing technology for global academia, research centers and industries including computational science, mathematics, finance, pharmaceutical, materials science, chemistry and cryptography. Although it has seen a major boost in the last decade, we are still a long way from reaching the maturity of a full-fledged quantum computer. That said, we will be in the Noisy-Intermediate Scale Quantum (NISQ) era for a long time, working on dozens or even thousands of qubits quantum computing systems. An outstanding challenge, then, is to come up with an application that can reliably carry out a nontrivial task of interest on the near-term quantum devices with non-negligible quantum noise. To address this challenge, several near-term quantum computing techniques, including variational quantum algorithms, error mitigation, quantum circuit compilation and benchmarking protocols, have been proposed to characterize and mitigate errors, and to implement algorithms with a certain resistance to noise, so as to enhance the capabilities of near-term quantum devices and explore the boundaries of their ability to realize useful applications. Besides, the development of near-term quantum devices is inseparable from the efficient classical simulation, which plays a vital role in quantum algorithm design and verification, error-tolerant verification and other applications. This review will provide a thorough introduction of these near-term quantum computing techniques, report on their progress, and finally discuss the future prospect of these techniques, which we hope will motivate researchers to undertake additional studies in this field.Comment: Please feel free to email He-Liang Huang with any comments, questions, suggestions or concern

    Identify submitochondria and subchloroplast locations with pseudo amino acid composition: Approach from the strategy of discrete wavelet transform feature extraction

    Get PDF
    AbstractIt is very challenging and complicated to predict protein locations at the sub-subcellular level. The key to enhancing the prediction quality for protein sub-subcellular locations is to grasp the core features of a protein that can discriminate among proteins with different subcompartment locations. In this study, a different formulation of pseudoamino acid composition by the approach of discrete wavelet transform feature extraction was developed to predict submitochondria and subchloroplast locations. As a result of jackknife cross-validation, with our method, it can efficiently distinguish mitochondrial proteins from chloroplast proteins with total accuracy of 98.8% and obtained a promising total accuracy of 93.38% for predicting submitochondria locations. Especially the predictive accuracy for mitochondrial outer membrane and chloroplast thylakoid lumen were 82.93% and 82.22%, respectively, showing an improvement of 4.88% and 27.22% when other existing methods were compared. The results indicated that the proposed method might be employed as a useful assistant technique for identifying sub-subcellular locations. We have implemented our algorithm as an online service called SubIdent (http://bioinfo.ncu.edu.cn/services.aspx)
    corecore