442 research outputs found

    Bogoliubov Hamiltonian as Derivative of Dirac Hamiltonian via Braid Relation

    Full text link
    In this paper we discuss a new type of 4-dimensional representation of the braid group. The matrices of braid operations are constructed by q-deformation of Hamiltonians. One is the Dirac Hamiltonian for free electron with mass m, the other, which we find, is related to the Bogoliubov Hamiltonian for quasiparticles in 3^3He-B with the same free energy and mass being m/2. In the process, we choose the free q-deformation parameter as a special value in order to be consistent with the anyon description for fractional quantum Hall effect with ν=1/2\nu = 1/2.Comment: 3 pages, 5 figure

    FSD-C10, a Fasudil derivative, promotes neuroregeneration through indirect and direct mechanisms.

    Get PDF
    FSD-C10, a Fasudil derivative, was shown to reduce severity of experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS), through the modulation of the immune response and induction of neuroprotective molecules in the central nervous system (CNS). However, whether FSD-C10 can promote neuroregeneration remains unknown. In this study, we further analyzed the effect of FSD-C10 on neuroprotection and remyelination. FSD-C10-treated mice showed a longer, thicker and more intense MAP2 and synaptophysin positive signal in the CNS, with significantly fewer CD4(+) T cells, macrophages and microglia. Importantly, the CNS of FSD-C10-treated mice showed a shift of activated macrophages/microglia from the type 1 to type 2 status, elevated numbers of oligodendrocyte precursor cells (OPCs) and oligodendrocytes, and increased levels of neurotrophic factors NT-3, GDNF and BDNF. FSD-C10-treated microglia significantly inhibited Th1/Th17 cell differentiation and increased the number of IL-10(+) CD4(+) T cells, and the conditioned medium from FSD-C10-treated microglia promoted OPC survival and oligodendrocyte maturation. Addition of FSD-C10 directly promoted remyelination in a chemical-induced demyelination model on organotypic slice culture, in a BDNF-dependent manner. Together, these findings demonstrate that FSD-C10 promotes neural repair through mechanisms that involved both immunomodulation and induction of neurotrophic factors

    A Comparison of Sentinel-1 Biased and Unbiased Coherence for Crop Monitoring and Classification

    Get PDF
    Synthetic Aperture Radar (SAR) holds significant potential for applications in crop monitoring and classification. Interferometric SAR (InSAR) coherence proves effective in monitoring crop growth. Currently, the coherence based on the maximum likelihood estimator is biased towards low coherence values. Therefore, the main aim of this work is to access the performance of Sentinel-1 time-series biased coherence and unbiased coherence in crop monitoring and classification. This study was conducted during the 2018 growing season (April-October) in Komoka, an agricultural region in southwestern Ontario, Canada, primarily cultivating three crops: soybean, corn, and winter wheat. To verify the ability of coherence to monitor crops, a linear correlation coefficient between temporal coherence and dual polarimetric radar vegetation index (DpRVI) was fitted. The results revealed a stable correlation between temporal coherence and DpRVI time-series, with the highest correlation observed for soybean (0.7 < R < 0.8), followed by wheat and corn. Notably, unbiased coherence of the VV channel exhibited the highest correlation (R > 0.75). In addition, we applied unbiased coherence to crop classification. The results show that unbiased coherence exhibits very promising classification performance, with the overall accuracy (84.83%) and kappa coefficient (0.76) of VV improved by 8.35% and 0.12, respectively, over biased coherence, and the overall accuracy (73.25%) and kappa coefficient (0.57) of VH improved by 7.56% and 0.14, respectively, over biased coherence, and all crop classification accuracies were also effectively improved. This study demonstrates the feasibility of coherence monitoring of crops and provides new insights in enhancing the higher separability of crops

    mRNA/microRNA Profile at the Metamorphic Stage of Olive Flounder (Paralichthys olivaceus)

    Get PDF
    Flatfish is famous for the asymmetric transformation during metamorphosis. The molecular mechanism behind the asymmetric development has been speculated over a century and is still not well understood. To date, none of the metamorphosis-related genes has been identified in flatfish. As the first step to screen metamorphosis-related gene, we constructed a whole-body cDNA library and a whole-body miRNA library in this study and identified 1051 unique ESTs, 23 unique miRNAs, and 4 snoRNAs in premetamorphosing and prometamorphosing Paralichthys olivaceus. 1005 of the ESTs were novel, suggesting that there was a special gene expression profile at metamorphic stage. Four miRNAs (pol-miR-20c, pol-miR-23c, pol-miR-130d, and pol-miR-181e) were novel to P. olivaceus; they were characterized as highly preserved homologies of published miRNAs but with at least one nucleotide differed. Representative 24 mRNAs and 23 miRNAs were quantified during metamorphosis of P. olivaceus by using quantitative RT PCR or stem-loop qRT PCR. Our results showed that 20 of mRNAs might be associated with early metamorphic events, 10 of mRNAs might be related with later metamorphic events, and 16 of miRNAs might be involved in the regulation of metamorphosis. The data provided in this study would be helpful for further identifying metamorphosis-related gene in P. olivaceus

    Determination of heavy metals in chinese prickly ash from different production areas using inductively coupled plasma-mass spectrometry

    Get PDF
    Purpose: To determine the heavy metal content of Chinese prickly ash (CPA) produced in various areas of China.Methods: CPA samples collected from different production areas in China were subjected to microwave digestion, and the contents of copper (Cu), nickel (Ni), chromium (Cr), lead (Pb), cadmium (Cd), arsenic (As), mercury (Hg), tin (Sn), and antimony (Sb) were determined by inductively coupled plasma-mass spectrometry (ICP-MS).Results: Heavy metal levels in the CPA samples followed the order: Cu (3.29-24.17 mg/kg) > Cr (0.04-7.33 mg/kg) > Ni (0.88-6.86 mg/kg) > Pb (0.00-3.84 mg/kg) > As (0.0011-1.08 mg/kg) > Cd (0.029-0.211 mg/kg) > Sb (0.03-0.21 mg/kg) > Sn (0.00-0.15 mg/kg) > Hg (0.000-0.032 mg/kg). Metal-to-metal correlation studies showed that there were significant correlations between Cu-Cr (p = -4.02), Cu-Ni (p = 0.561), Cu-As (p = 0.554) and Ni-As (p = 0.428) at the 0.01 level. Also, some metal-to-metal correlations were observed in Pb-Cr (p = 0.351), Pb-Cu (p = -0.310), Sb-Cd (p = 0.322), Sb-Hg (p = 0.311) and Cd-Sn (p = 0.309) at the 0.05 level. The highest concentrations of Pb and As in CPA exceeded the maximum permissible limits in China. Based on current safety standards, the concentrations of heavy metals in these CPA samples mean they are safe for human consumption.Conclusions: The status of heavy metal concentrations of CPA should be further investigated in Sichuan, Shaanxi, Shanxi and Jiangsu. In addition, ICP-MS is a reliable and rapid technique for the determination of the heavy metals in CPA.Keywords: Chinese prickly ash, Heavy metals, Inductively-coupled plasma-mass spectrometry, Food safet

    Maximizing temporal quantum correlation by approaching an exceptional point

    Full text link
    Quantum correlations, both spatial and temporal, are the central pillars of quantum mechanics. Over the last two decades, a big breakthrough in quantum physics is its complex extension to the non-Hermitian realm, and dizzying varieties of novel phenomena and applications beyond the Hermitian framework have been uncovered. However, unique features of non-Hermitian quantum correlations, especially in the time domain, still remain to be explored. Here, for the first time, we experimentally achieve this goal by using a parity-time (PT )-symmetric trapped-ion system. The upper limit of temporal quantum correlations, known as the algebraic bound, which has so far not been achieved in the standard measurement scenario, is reached here by approaching the exceptional point (EP), thus showing the unexpected ability of EPs in tuning temporal quantum correlation effects. Our study, unveiling the fundamental interplay of non-Hermiticity, nonlinearity, and temporal quantum correlations, provides the first step towards exploring and utilizing various non-Hermitian temporal quantum effects by operating a wide range of EP devices, which are important for both fundamental studies and applications of quantum EP systems.Comment: 4 figures and 8 page

    Insights Into the Bovine Milk Microbiota in Dairy Farms With Different Incidence Rates of Subclinical Mastitis

    Get PDF
    Bovine mastitis continues to be a complex disease associated with significant economic loss in dairy industries worldwide. The incidence rate of subclinical mastitis (IRSCM) can show substantial variation among different farms; however, the milk microbiota, which have a direct influence on bovine mammary gland health, have never been associated with the IRSCM. Here, we aimed to use high-throughput DNA sequencing to describe the milk microbiota from two dairy farms with different IRSCMs and to identify the predominant mastitis pathogens along with commensal or potential beneficial bacteria. Our study showed that Klebsiella, Escherichia–Shigella, and Streptococcus were the mastitis-causing pathogens in farm A (with a lower IRSCM), while Streptococcus and Corynebacterium were the mastitis-causing pathogens in farm B (with a higher IRSCM). The relative abundance of all pathogens in farm B (22.12%) was higher than that in farm A (9.82%). However, the genus Bacillus was more prevalent in farm A. These results may be helpful for explaining the lower IRSCM in farm A. Additionally, the gut-associated genera Prevotella, Ruminococcus, Bacteroides, Rikenella, and Alistipes were prevalent in all milk samples, suggesting gut bacteria can be one of the predominant microbial contamination in milk. Moreover, Listeria monocytogenes (a foodborne pathogen) was found to be prevalent in farm A, even though it had a lower IRSCM. Overall, our study showed complex diversity between the milk microbiota in dairy farms with different IRSCMs. This suggests that variation in IRSCMs may not only be determined by the heterogeneity and prevalence of mastitis-causing pathogens but also be associated with potential beneficial bacteria. In the future, milk microbiota should be considered in bovine mammary gland health management. This would be helpful for both the establishment of a targeted mastitis control system and the control of the safety and quality of dairy products
    corecore