4,919 research outputs found

    Delineating effects of tensor force on the density dependence of nuclear symmetry energy

    Full text link
    In this talk, we report results of our recent studies to delineate effects of the tensor force on the density dependence of nuclear symmetry energy within phenomenological models. The tensor force active in the isosinglet neutron-proton interaction channel leads to appreciable depletion/population of nucleons below/above the Fermi surface in the single-nucleon momentum distribution in cold symmetric nuclear matter (SNM). We found that as a consequence of the high momentum tail in SNM the kinetic part of the symmetry energy Esymkin(ρ)E^{kin}_{sym}(\rho) is significantly below the well-known Fermi gas model prediction of approximately 12.5(ρ/ρ0)2/312.5 (\rho/\rho_0)^{2/3}. With about 15% nucleons in the high momentum tail as indicated by the recent experiments at J-Lab by the CLAS Collaboration, the Esymkin(ρ)E^{kin}_{sym}(\rho) is negligibly small. It even becomes negative when more nucleons are in the high momentum tail in SNM. These features have recently been confirmed by three independent studies based on the state-of-the-art microscopic nuclear many-body theories. In addition, we also estimate the second-order tensor force contribution to the potential part of the symmetry energy. Implications of these findings in extracting information about nuclear symmetry energy from nuclear reactions are discussed briefly.Comment: Talk given by Chang Xu at the 11th International Conference on Nucleus-Nucleus Collisions (NN2012), San Antonio, Texas, USA, May 27-June 1, 2012. To appear in the NN2012 Proceedings in Journal of Physics: Conference Series (JPCS

    Relationship between the symmetry energy and the single-nucleon potential in isospin-asymmetric nucleonic matter

    Full text link
    In this contribution, we review the most important physics presented originally in our recent publications. Some new analyses, insights and perspectives are also provided. We showed recently that the symmetry energy Esym(ρ)E_{sym}(\rho) and its density slope L(ρ)L(\rho) at an arbitrary density ρ\rho can be expressed analytically in terms of the magnitude and momentum dependence of the single-nucleon potentials using the Hugenholtz-Van Hove (HVH) theorem. These relationships provide new insights about the fundamental physics governing the density dependence of nuclear symmetry energy. Using the isospin and momentum (k) dependent MDI interaction as an example, the contribution of different terms in the single-nucleon potential to the Esym(ρ)E_{sym}(\rho) and L(ρ)L(\rho) are analyzed in detail at different densities. It is shown that the behavior of Esym(ρ)E_{sym}(\rho) is mainly determined by the first-order symmetry potential Usym,1(ρ,k)U_{sym,1}(\rho,k) of the single-nucleon potential. The density slope L(ρ)L(\rho) depends not only on the first-order symmetry potential Usym,1(ρ,k)U_{sym,1}(\rho,k) but also the second-order one Usym,2(ρ,k)U_{sym,2}(\rho,k). Both the Usym,1(ρ,k)U_{sym,1}(\rho,k) and Usym,2(ρ,k)U_{sym,2}(\rho,k) at normal density ρ0\rho_0 are constrained by the isospin and momentum dependent nucleon optical potential extracted from the available nucleon-nucleus scattering data. The Usym,2(ρ,k)U_{sym,2}(\rho,k) especially at high density and momentum affects significantly the L(ρ)L(\rho), but it is theoretically poorly understood and currently there is almost no experimental constraints known.Comment: 9 pages, 6 figures, Review paper, Contribution to the "Topical Issue" on "Nuclear Symmetry Energy" in European Physical Journal

    Why is the nuclear symmetry energy so uncertain at supra-saturation densities?

    Full text link
    Within the interacting Fermi gas model for isospin asymmetric nuclear matter, effects of the in-medium three-body interaction and the two-body short-range tensor force due to the ρ\rho meson exchange as well as the short-range nucleon correlation on the high-density behavior of the nuclear symmetry energy are demonstrated respectively in a transparent way. Possible physics origins of the extremely uncertain nuclear symmetry energy at supra-saturation densities are discussed.Comment: Added discussions and revised format. Version to appear in Phys. Rev. C (2010

    An improved single particle potential for transport model simulations of nuclear reactions induced by rare isotope beams

    Full text link
    Taking into account more accurately the isospin dependence of nucleon-nucleon interactions in the in-medium many-body force term of the Gogny effective interaction, new expressions for the single nucleon potential and the symmetry energy are derived. Effects of both the spin(isospin) and the density dependence of nuclear effective interactions on the symmetry potential and the symmetry energy are examined. It is shown that they both play a crucial role in determining the symmetry potential and the symmetry energy at supra-saturation densities. The improved single nucleon potential will be useful for simulating more accurately nuclear reactions induced by rare isotope beams within transport models.Comment: 6 pages including 6 figures

    Probing isospin- and momentum-dependent nuclear effective interactions in neutron-rich matter

    Full text link
    The single-particle potentials for nucleons and hyperons in neutron-rich matter generally depends on the density and isospin asymmetry of the medium as well as the momentum and isospin of the particle. It further depends on the temperature of the matter if the latter is in thermal equilibrium. We review here the extension of a Gogny-type isospin- and momentum-dependent interaction in several aspects made in recent years and their applications in studying intermediate-energy heavy ion collisions, thermal properties of asymmetric nuclear matter and properties of neutron stars. The importance of the isospin- and momentum-dependence of the single-particle potential, especially the momentum dependence of the isovector potential, is clearly revealed throughout these studies.Comment: 27 pages, 19 figures, 1 table, accepted version to appear in EPJA special volume on Nuclear Symmetry Energ

    Aspect ratio dependence of heat transport by turbulent Rayleigh-B\'{e}nard convection in rectangular cells

    Full text link
    We report high-precision measurements of the Nusselt number NuNu as a function of the Rayleigh number RaRa in water-filled rectangular Rayleigh-B\'{e}nard convection cells. The horizontal length LL and width WW of the cells are 50.0 cm and 15.0 cm, respectively, and the heights H=49.9H=49.9, 25.0, 12.5, 6.9, 3.5, and 2.4 cm, corresponding to the aspect ratios (ΓxL/H,ΓyW/H)=(1,0.3)(\Gamma_x\equiv L/H,\Gamma_y\equiv W/H)=(1,0.3), (2,0.6)(2,0.6), (4,1.2)(4,1.2), (7.3,2.2)(7.3,2.2), (14.3,4.3)(14.3,4.3), and (20.8,6.3)(20.8,6.3). The measurements were carried out over the Rayleigh number range 6×105Ra10116\times10^5\lesssim Ra\lesssim10^{11} and the Prandtl number range 5.2Pr75.2\lesssim Pr\lesssim7. Our results show that for rectangular geometry turbulent heat transport is independent of the cells' aspect ratios and hence is insensitive to the nature and structures of the large-scale mean flows of the system. This is slightly different from the observations in cylindrical cells where NuNu is found to be in general a decreasing function of Γ\Gamma, at least for Γ=1\Gamma=1 and larger. Such a difference is probably a manifestation of the finite plate conductivity effect. Corrections for the influence of the finite conductivity of the top and bottom plates are made to obtain the estimates of NuNu_{\infty} for plates with perfect conductivity. The local scaling exponents βl\beta_l of NuRaβlNu_{\infty}\sim Ra^{\beta_l} are calculated and found to increase from 0.243 at Ra9×105Ra\simeq9\times10^5 to 0.327 at Ra4×1010Ra\simeq4\times10^{10}.Comment: 15 pages, 7 figures, Accepted by Journal of Fluid Mechanic
    corecore