585 research outputs found
Self-Paced Learning: an Implicit Regularization Perspective
Self-paced learning (SPL) mimics the cognitive mechanism of humans and
animals that gradually learns from easy to hard samples. One key issue in SPL
is to obtain better weighting strategy that is determined by minimizer
function. Existing methods usually pursue this by artificially designing the
explicit form of SPL regularizer. In this paper, we focus on the minimizer
function, and study a group of new regularizer, named self-paced implicit
regularizer that is deduced from robust loss function. Based on the convex
conjugacy theory, the minimizer function for self-paced implicit regularizer
can be directly learned from the latent loss function, while the analytic form
of the regularizer can be even known. A general framework (named SPL-IR) for
SPL is developed accordingly. We demonstrate that the learning procedure of
SPL-IR is associated with latent robust loss functions, thus can provide some
theoretical inspirations for its working mechanism. We further analyze the
relation between SPL-IR and half-quadratic optimization. Finally, we implement
SPL-IR to both supervised and unsupervised tasks, and experimental results
corroborate our ideas and demonstrate the correctness and effectiveness of
implicit regularizers.Comment: 12 pages, 3 figure
Quantum interface between frequency-uncorrelated down-converted entanglement and atomic-ensemble quantum memory
Photonic entanglement source and quantum memory are two basic building blocks
of linear-optical quantum computation and long-distance quantum communication.
In the past decades, intensive researches have been carried out, and remarkable
progress, particularly based on the spontaneous parametric down-converted
(SPDC) entanglement source and atomic ensembles, has been achieved. Currently,
an important task towards scalable quantum information processing (QIP) is to
efficiently write and read entanglement generated from a SPDC source into and
out of an atomic quantum memory. Here we report the first experimental
realization of a quantum interface by building a 5 MHz frequency-uncorrelated
SPDC source and reversibly mapping the generated entangled photons into and out
of a remote optically thick cold atomic memory using electromagnetically
induced transparency. The frequency correlation between the entangled photons
is almost fully eliminated with a suitable pump pulse. The storage of a
triggered single photon with arbitrary polarization is shown to reach an
average fidelity of 92% for 200 ns storage time. Moreover,
polarization-entangled photon pairs are prepared, and one of photons is stored
in the atomic memory while the other keeps flying. The CHSH Bell's inequality
is measured and violation is clearly observed for storage time up to 1
microsecond. This demonstrates the entanglement is stored and survives during
the storage. Our work establishes a crucial element to implement scalable
all-optical QIP, and thus presents a substantial progress in quantum
information science.Comment: 28 pages, 4 figures, 1 tabl
Quantum Key Distribution and Quantum Authentication Based on Entangled State
Using the previously shared Einstein-Podolsky-Rosen pairs, a proposal which
can be used to distribute a quantum key and identify the user's identification
simultaneously is presented. In this scheme, two local unitary operations and
the Bell state measurement are used. Combined with quantum memories, a
cryptographic network is proposed. One advantage is no classical communication
is needed, which make the scheme more secure. The secure analysis of this
scheme is shown.Comment: Revtex, 9 pages, no figure, accepted for publication by Phys. Lett.
- …