2,359 research outputs found
Triton-3He relative and differential flows and the high density behavior of nuclear symmetry energy
Using a transport model coupled with a phase-space coalescence after-burner
we study the triton-3He relative and differential transverse flows in
semi-central 132Sn+124Sn reactions at a beam energy of 400 MeV/nucleon. We find
that the triton-3He pairs carry interesting information about the density
dependence of the nuclear symmetry energy. The t-3He relative flow can be used
as a particularly powerful probe of the high-density behavior of the nuclear
symmetry energy.Comment: 6 pages, 2 figures, Proceeding of The International Workshop on
Nuclear Dynamics in Heavy-Ion Reactions and the Symmetry Energ
Effects of Neutron-Proton Short-Range Correlation on the Equation of State of Dense Neutron-Rich Nucleonic Matter
The strongly isospin-dependent tensor force leads to short-range correlations
(SRC) between neutron-proton (deuteron-like) pairs much stronger than those
between proton-proton and neutron-neutron pairs. As a result of the short-range
correlations, the single-nucleon momentum distribution develops a high-momentum
tail above the Fermi surface. Because of the strongly isospin-dependent
short-range correlations, in neutron-rich matter a higher fraction of protons
will be depleted from its Fermi sea and populate above the Fermi surface
compared to neutrons. This isospin-dependent nucleon momentum distribution may
have effects on: (1) nucleon spectroscopic factors of rare isotopes, (2) the
equation of state especially the density dependence of nuclear symmetry energy,
(3) the coexistence of a proton-skin in momentum space and a neutron-skin in
coordinate space (i.e., protons move much faster than neutrons near the surface
of heavy nuclei). In this talk, we discuss these features and their possible
experimental manifestations. As an example, SRC effects on the nuclear symmetry
energy are discussed in detail using a modified Gogny-Hartree-Fock (GHF) energy
density functional (EDF) encapsulating the SRC-induced high momentum tail (HMT)
in the single-nucleon momentum distribution
Constraining the Skyrme effective interactions and the neutron skin thickness of nuclei using isospin diffusion data from heavy ion collisions
Recent analysis of the isospin diffusion data from heavy-ion collisions based
on an isospin- and momentum-dependent transport model with in-medium
nucleon-nucleon cross sections has led to the extraction of a value of MeV for the slope of the nuclear symmetry energy at saturation density.
This imposes stringent constraints on both the parameters in the Skyrme
effective interactions and the neutron skin thickness of heavy nuclei. Among
the 21 sets of Skyrme interactions commonly used in nuclear structure studies,
the 4 sets SIV, SV, G, and R are found to give values
that are consistent with the extracted one. Further study on the correlations
between the thickness of the neutron skin in finite nuclei and the nuclear
matter symmetry energy in the Skyrme Hartree-Fock approach leads to predicted
thickness of the neutron skin of fm for Pb, fm for Sn, and fm for Sn.Comment: 10 pages, 4 figures, 1 Table, Talk given at 1) International
Conference on Nuclear Structure Physics, Shanghai, 12-17 June, 2006; 2) 11th
China National Nuclear Structure Physics Conference, Changchun, Jilin, 13-18
July, 200
Relationship between the symmetry energy and the single-nucleon potential in isospin-asymmetric nucleonic matter
In this contribution, we review the most important physics presented
originally in our recent publications. Some new analyses, insights and
perspectives are also provided. We showed recently that the symmetry energy
and its density slope at an arbitrary density
can be expressed analytically in terms of the magnitude and momentum dependence
of the single-nucleon potentials using the Hugenholtz-Van Hove (HVH) theorem.
These relationships provide new insights about the fundamental physics
governing the density dependence of nuclear symmetry energy. Using the isospin
and momentum (k) dependent MDI interaction as an example, the contribution of
different terms in the single-nucleon potential to the and
are analyzed in detail at different densities. It is shown that the
behavior of is mainly determined by the first-order symmetry
potential of the single-nucleon potential. The density
slope depends not only on the first-order symmetry potential
but also the second-order one . Both the
and at normal density are
constrained by the isospin and momentum dependent nucleon optical potential
extracted from the available nucleon-nucleus scattering data. The
especially at high density and momentum affects
significantly the , but it is theoretically poorly understood and
currently there is almost no experimental constraints known.Comment: 9 pages, 6 figures, Review paper, Contribution to the "Topical Issue"
on "Nuclear Symmetry Energy" in European Physical Journal
Human platelets repurposed as vehicles for in vivo imaging of myeloma xenotransplants.
Human platelets were identified in tumors by Trousseau in 1865, although their roles in tumor microenvironments have only recently attracted the attention of cancer researchers. In this study we exploit and enhance platelet interactions in tumor microenvironments by introducing tumor-targeting and imaging functions. The first step in repurposing human platelets as vehicles for tumor-targeting was to inhibit platelet-aggregation by cytoplasmic-loading of kabiramide (KabC), a potent inhibitor of actin polymerization and membrane protrusion. KabC-Platelets can accumulate high levels of other membrane-permeable cytoxins and probes, including epidoxorubicin, carboxyfluorescein di-ester and chlorin-e6. Finally, mild reaction conditions were developed to couple tumor-targeting proteins and antibodies to KabC-platelets. Fluorescence microscopy studies showed KabC-platelets, surface-coupled with transferrin and Cy5, bind specifically to RPMI8226 and K562 cells, both of which over-express the transferrin receptor. Repurposed platelets circulate for upto 9-days a feature that increases their chance of interacting with target cells. KabC-platelets, surface-coupled with transferrin and Cy7, or chlorin-e6, and injected in immuno-compromised mice were shown to accumulate specifically in sub-cutaneous and intra-cranial myeloma xenotransplants. The high-contrast, in vivo fluorescence images recorded from repurposed platelets within early-stage myeloma is a consequence in part of their large size (φ~2µm), which allows them to transport 100 to 1000-times more targeting-protein and probe molecules respectively. Human platelets can be configured with a plurality of therapeutic and targeting antibodies to help stage tumor environments for an immunotherapy, or with combinations of therapeutic antibodies and therapeutic agents to target and treat cardiovascular and neurologic diseases
Radio Frequency Interference Mitigation
Radio astronomy observational facilities are under constant upgradation and
development to achieve better capabilities including increasing the time and
frequency resolutions of the recorded data, and increasing the receiving and
recording bandwidth. As only a limited spectrum resource has been allocated to
radio astronomy by the International Telecommunication Union, this results in
the radio observational instrumentation being inevitably exposed to undesirable
radio frequency interference (RFI) signals which originate mainly from
terrestrial human activity and are becoming stronger with time. RFIs degrade
the quality of astronomical data and even lead to data loss. The impact of RFIs
on scientific outcome is becoming progressively difficult to manage. In this
article, we motivate the requirement for RFI mitigation, and review the RFI
characteristics, mitigation techniques and strategies. Mitigation strategies
adopted at some representative observatories, telescopes and arrays are also
introduced. We also discuss and present advantages and shortcomings of the four
classes of RFI mitigation strategies, applicable at the connected causal
stages: preventive, pre-detection, pre-correlation and post-correlation. The
proper identification and flagging of RFI is key to the reduction of data loss
and improvement in data quality, and is also the ultimate goal of developing
RFI mitigation techniques. This can be achieved through a strategy involving a
combination of the discussed techniques in stages. Recent advances in high
speed digital signal processing and high performance computing allow for
performing RFI excision of large data volumes generated from large telescopes
or arrays in both real time and offline modes, aiding the proposed strategy.Comment: 26 pages, 10 figures, Chinese version accepted for publication in
Acta Astronomica Sinica; English version to appear in Chinese Astronomy and
Astrophysic
- …