5,311 research outputs found

    Low-lying S-wave and P-wave Dibaryons in a Nodal Structure Analysis

    Get PDF
    The dibaryon states as six-quark clusters of exotic QCD states are investigated in this paper. With the inherent nodal surface structure analysis, the wave functions of the six-quark clusters (in another word, the dibaryons) are classified. The contribution of the hidden color channels are discussed. The quantum numbers of the low-lying dibaryon states are obtained. The States [ΩΩ](0,0+)[\Omega\Omega]_{(0,0^{+})}, [ΩΩ](0,2)[\Omega\Omega]_{(0,2^{-})}, [ΞΩ](1/2,0+)[\Xi^{*}\Omega]_{(1/2,0^{+})}, [ΣΣ](0,4)[\Sigma^{*}\Sigma^{*}]_{(0,4^{-})} and the hidden color channel states with the same quantum numbers are proposed to be the candidates of dibaryons, which may be observed in experiments.Comment: 29 pages, 2 figure

    Efficiency optimization in a correlation ratchet with asymmetric unbiased fluctuations

    Full text link
    The efficiency of a Brownian particle moving in periodic potential in the presence of asymmetric unbiased fluctuations is investigated. We found that there is a regime where the efficiency can be a peaked function of temperature, which proves that thermal fluctuations facilitate the efficiency of energy transformation, contradicting the earlier findings (H. kamegawa et al. Phys. Rev. Lett. 80 (1998) 5251). It is also found that the mutual interplay between asymmetry of fluctuation and asymmetry of the potential may induce optimized efficiency at finite temperature. The ratchet is not most efficiency when it gives maximum current.Comment: 10 pages, 7 figure

    Incommensurate magnetic order in the alpha-Fe(Te,Se) superconductor systems

    Get PDF
    Magnetic spin fluctuations is one candidate to produce the bosonic modes that mediate the superconductivity in the ferrous superconductors. Up until now, all of the LaOFeAs and BaFe2As2 structure types have simple commensurate magnetic ground states, as result of nesting Fermi surfaces. This type of spin-density-wave (SDW) magnetic order is known to be vulnerable to shifts in the Fermi surface when electronic densities are altered at the superconducting compositions. Superconductivity has more recently been discovered in alpha-Fe(Te,Se), whose electronically active antifluorite planes are isostructural to the FeAs layers found in the previous ferrous superconductors and share with them the same quasi-two-dimensional electronic structure. Here we report neutron scattering studies that reveal a unique complex incommensurate antiferromagnetic order in the parent compound alpha-FeTe. When the long-range magnetic order is suppressed by the isovalent substitution of Te with Se, short-range correlations survive in the superconducting phase.Comment: 27 pages, 7 figures, 1 tabl

    Robust and clean Majorana zero mode in the vortex core of high-temperature superconductor (Li0.84Fe0.16)OHFeSe

    Full text link
    The Majorana fermion, which is its own anti-particle and obeys non-abelian statistics, plays a critical role in topological quantum computing. It can be realized as a bound state at zero energy, called a Majorana zero mode (MZM), in the vortex core of a topological superconductor, or at the ends of a nanowire when both superconductivity and strong spin orbital coupling are present. A MZM can be detected as a zero-bias conductance peak (ZBCP) in tunneling spectroscopy. However, in practice, clean and robust MZMs have not been realized in the vortices of a superconductor, due to contamination from impurity states or other closely-packed Caroli-de Gennes-Matricon (CdGM) states, which hampers further manipulations of Majorana fermions. Here using scanning tunneling spectroscopy, we show that a ZBCP well separated from the other discrete CdGM states exists ubiquitously in the cores of free vortices in the defect free regions of (Li0.84Fe0.16)OHFeSe, which has a superconducting transition temperature of 42 K. Moreover, a Dirac-cone-type surface state is observed by angle-resolved photoemission spectroscopy, and its topological nature is confirmed by band calculations. The observed ZBCP can be naturally attributed to a MZM arising from this chiral topological surface states of a bulk superconductor. (Li0.84Fe0.16)OHFeSe thus provides an ideal platform for studying MZMs and topological quantum computing.Comment: 32 pages, 15 figures (supplementary materials included), accepted by PR

    Anisotropy study on thermionic emission and magnetoresistivity of single crystal CeB<sub>6</sub>

    Get PDF

    The Superconducting Transition Temperatures of Fe1+xSe1--y, Fe1+xSe1--yTey and (K/Rb/Cs)zFe2--xSe2

    Full text link
    In a recent contribution to this journal, it was shown that the transition temperatures of optimal high-Tc compounds obey the algebraic relation, Tc0 = kB-1{\beta}/\ell{\zeta}, where \ell is related to the mean spacing between interacting charges in the layers, {\zeta} is the distance between interacting electronic layers, {\beta} is a universal constant and kB is Boltzmann's constant. The equation was derived assuming pairing based on interlayer Coulomb interactions between physically separated charges. This theory was initially validated for 31 compounds from five different high-Tc families (within an accuracy of \pm1.37 K). Herein we report the addition of Fe1+xSe1-y and Fe1+xSe1-yTey (both optimized under pressure) and AzFe2-xSe2 (for A = K, Rb, or Cs) to the growing list of Coulomb-mediated superconducting compounds in which Tc0 is determined by the above equation. Doping in these materials is accomplished through the introduction of excess Fe and/or Se deficiency, or a combination of alkali metal and Fe vacancies. Consequently, a very small number of vacancies or interstitials can induce a superconducting state with a substantial transition temperature. The confirmation of the above equation for these Se-based Fe chalcogenides increases to six the number of superconducting families for which the transition temperature can be accurately predicted.Comment: 16 pages, 54 references 3 figures 1 tabl

    A Microscopic Mechanism for Muscle's Motion

    Full text link
    The SIRM (Stochastic Inclined Rods Model) proposed by H. Matsuura and M. Nakano can explain the muscle's motion perfectly, but the intermolecular potential between myosin head and G-actin is too simple and only repulsive potential is considered. In this paper we study the SIRM with different complex potential and discuss the effect of the spring on the system. The calculation results show that the spring, the effective radius of the G-actin and the intermolecular potential play key roles in the motion. The sliding speed is about 4.7×106m/s4.7\times10^{-6}m/s calculated from the model which well agrees with the experimental data.Comment: 9 pages, 6 figure

    Tunable hybrid surface waves supported by a graphene layer

    Full text link
    We study surface waves localized near a surface of a semi-infinite dielectric medium covered by a layer of graphene in the presence of a strong external magnetic field. We demonstrate that both TE-TM hybrid surface plasmons can propagate along the graphene surface. We analyze the effect of the Hall conductivity on the disper- sion of hybrid surface waves and suggest a possibility to tune the plasmon dispersion by the magnetic field.Comment: 3 pages, 3 figure

    Critical magnetic fluctuations induced superconductivity and residual density of states in CeRhIn5CeRhIn_5 superconductor

    Full text link
    We propose the multiband extension of the spin-fermion model to address the superconducting d-wave pairing due to magnetic interaction near critical point. We solve the unrestricted gap equation with a general d-wave symmetry gap and find that divergent magnetic correlation length ξ\xi leads to the very unharmonic shape of the gap function with shallow gap regions near nodes. These regions are extremely sensitive to disorder. Small impurity concentration induces substantial residual density of states. We argue that we can understand the large Nres(0)=limT0Cp(T)/TN_{res}(0) = \lim_{T\to 0} C_p(T)/T value and its pressure dependence of the recently discovered CeRhIn5CeRhIn_5 superconductor under pressure within this approach.Comment: 5 figure
    corecore