29 research outputs found

    Identity Authentication Security Management in Mobile Payment Systems

    Get PDF
    Mobile payment is a new payment method offering users mobility, reachability, compatibility, and convenience. But mobile payment involves great uncertainty and risk given its electronic and wireless nature. Therefore, biometric authentication has been adopted widely in mobile payment in recent years. However, although technology requirements for secure mobile payment have been met, standards and consistent requirements of user authentication in mobile payment are not available. The flow management of user authentication in mobile payment is still at its early stage. Accordingly, this paper proposes an anonymous authentication and management flow for mobile payment to support secure transaction to prevent the disclosure of users\u27 information and to reduce identity theft. The proposed management flow integrates transaction key generation, encryption and decryption, and matching to process users\u27 personal information and biometric characteristics based on mobile equipment authentication carrier

    Residual Cx45 and its relationship to Cx43 in murine ventricular myocardium

    Get PDF
    Gap junction channels in ventricular myocardium are required for electrical and metabolic coupling between cardiac myocytes and for normal cardiac pump function. Although much is known about expression patterns and remodeling of cardiac connexin (Cx)43, little is known about the less abundant Cx45, which is required for embryonic development and viability, is downregulated in adult hearts, and is pathophysiologically upregulated in human end-stage heart failure. We applied quantitative immunoblotting and immunoprecipitation to native myocardial extracts, immunogold electron microscopy to cardiac tissue and membrane sections, electrophysiological recordings to whole hearts, and high-resolution tandem mass spectrometry to Cx45 fusion protein, and developed two new tools, anti-Cx45 antisera and Cre(+);Cx45 floxed mice, to facilitate characterization of Cx45 in adult mammalian hearts. We found that Cx45 represents 0.3% of total Cx protein (predominantly 200 fmol Cx43 protein/µg ventricular protein) and colocalizes with Cx43 in native ventricular gap junctions, particularly in the apex and septum. Cre(+);Cx45 floxed mice express 85% less Cx45, but do not exhibit overt electrophysiologic abnormalities. Although the basal phosphorylation status of native Cx45 remains unknown, CaMKII phosphorylates eight Ser/Thr residues in Cx45 in vitro. Thus, although downregulation of Cx45 does not produce notable deficits in electrical conduction in adult, disease-free hearts, Cx45 is a target of the multifunctional kinase CaMKII, and the phosphorylation status of Cx45 and the role of Cx43/Cx45 heteromeric gap junction channels in both normal and diseased hearts merits further investigation

    Devil is Virtual: Reversing Virtual Inheritance in C++ Binaries

    Full text link
    Complexities that arise from implementation of object-oriented concepts in C++ such as virtual dispatch and dynamic type casting have attracted the attention of attackers and defenders alike. Binary-level defenses are dependent on full and precise recovery of class inheritance tree of a given program. While current solutions focus on recovering single and multiple inheritances from the binary, they are oblivious to virtual inheritance. Conventional wisdom among binary-level defenses is that virtual inheritance is uncommon and/or support for single and multiple inheritances provides implicit support for virtual inheritance. In this paper, we show neither to be true. Specifically, (1) we present an efficient technique to detect virtual inheritance in C++ binaries and show through a study that virtual inheritance can be found in non-negligible number (more than 10\% on Linux and 12.5\% on Windows) of real-world C++ programs including Mysql and libstdc++. (2) we show that failure to handle virtual inheritance introduces both false positives and false negatives in the hierarchy tree. These false positves and negatives either introduce attack surface when the hierarchy recovered is used to enforce CFI policies, or make the hierarchy difficult to understand when it is needed for program understanding (e.g., during decompilation). (3) We present a solution to recover virtual inheritance from COTS binaries. We recover a maximum of 95\% and 95.5\% (GCC -O0) and a minimum of 77.5\% and 73.8\% (Clang -O2) of virtual and intermediate bases respectively in the virtual inheritance tree.Comment: Accepted at CCS20. This is a technical report versio

    Numerical and Experimental Study on the Direct Chill Casting of Large-Scale AA2219 Billets via Annular Coupled Electromagnetic Field

    No full text
    The internal coupled electromagnetic melt treatment (ICEMT) method is firstly proposed to produce high-quality and large-sized aluminum alloy billets. A three-dimensional model was established to describe the ICEMT process of direct chill casting (DC casting). The effect of ICEMT on the fluid flow patterns and temperature field in the DC casting of ϕ880 mm AA2219 billets is numerically analyzed. Moreover, the mechanisms of the ICEMT process on grain refinement and macrosegregation were discussed. The calculated results indicate that the electromagnetic field appears to be coupled circinate at the cross section of the melt, the fluid flow becomes unstable accompanied by the bias flow, and the temperature profiles are significantly more uniform. An experimental verification was conducted and the results prove that compared with traditional direct chill casting, the microstructures of the AA2219 large-scale billet under the ICEMT process are uniform and fine

    Research on the Influence of Nanocarbon/Copolymer SBS/Rubber Powder Composite Modification on the Properties of Asphalt and Mixtures

    No full text
    To expand the application range of modified asphalt and mixtures and effectively reduce the aggregation of nanomaterials in asphalt, nanocarbon/styrene butadiene styrene (SBS)/rubber powder composite-modified asphalt is proposed. This paper presents a laboratory study on the performance of nanocarbon/copolymer SBS/rubber powder composite-modified asphalt, and nanocarbon particles modified by titanate coupling agents as modifiers are selected. The nanocarbon/copolymer SBS/rubber powder composite-modified asphalt was prepared by a high-speed shearing method. The physical properties and rheological performance were assessed using ductility tests, softening point tests, penetration tests, dynamic shear rheometer (DSR) tests, and bending beam rheometer (BBR) tests. Furthermore, the mixture properties, including the high-temperature stability, low-temperature cracking resistance, moisture stability, and freeze-thaw splitting, were evaluated in the laboratory. The micromorphology of the base asphalt and composite-modified asphalt was examined by scanning electron microscopy (SEM), and the reactions between the modifiers and AH-70 base asphalt were studied by Fourier transform infrared spectroscopy (FTIR). The results reveal that the surface-modified nanocarbon and rubber powder additives substantially increased the softening point and penetration index of the base asphalt, with little obvious influence on the low-temperature performance. In addition, when nanocarbon/copolymer SBS/rubber powder composite-modified asphalt was used, the high-temperature stability and low-temperature cracking resistance of the nanocarbon/copolymer SBS/rubber powder composite-modified asphalt mixture were approximately 1.3 times those of the nanocarbon/rubber powder asphalt mixture. In terms of the micromorphology and reaction, the addition of the nanocarbon can increase the compatibility between the base asphalt and rubber powder, and then the addition of copolymer SBS can improve the structure of nanocarbon (after surface modification)/rubber powder-modified asphalt to form a stable network. Moreover, the physical reaction plays the dominant role in the modification process for the rubber powder and base asphalt, and chemical reactions occur in the modification process for the surface-modified nanocarbon and base asphalt

    Transformation of Litchi Pericarp-Derived Condensed Tannin with Aspergillus awamori

    No full text
    Condensed tannin is a ubiquitous polyphenol in plants that possesses substantial antioxidant capacity. In this study, we have investigated the polyphenol extraction recovery and 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity of the extracted polyphenol after litchi pericarp is treated with Aspergillus awamori, Aspergillus sojae or Aspergillus oryzae. We have further explored the activity of A. awamori in the formation of condensed tannin. The treatment of A. awamori appeared to produce the highest antioxidant activity of polyphenol from litchi pericarp. Further studies suggested that the treatment of A. awamori releases the non-extractable condensed tannin from cell walls of litchi pericarp. The total extractable tannin in the litchi pericarp residue after a six-time extraction with 60% ethanol increased from 199.92 ± 14.47–318.38 ± 7.59 μg/g dry weight (DW) after the treatment of A. awamori. The ESI-TOF-MS and HPLC-MS2 analyses further revealed that treatment of A. awamori degraded B-type condensed tannin (condensed flavan-3-ol via C4–C8 linkage), but exhibited a limited capacity to degrade the condensed tannin containing A-type linkage subunits (C4–C8 coupled C2–O–C7 linkage). These results suggest that the treatment of A. awamori can significantly improve the production of condensed tannin from litchi pericarp

    Gut Microbiome Variation Along A Lifestyle Gradient Reveals Threats Faced by Asian Elephants

    No full text
    The gut microbiome is closely related to host nutrition and health. However, the relationships between gut microorganisms and host lifestyle are not well characterized. In the absence of confounding geographic variation, we defined clear patterns of variation in the gut microbiomes of Asian elephants (AEs) in the Wild Elephant Valley, Xishuangbanna, China, along a lifestyle gradient (completely captive, semicaptive, semiwild, and completely wild). A phylogenetic analysis using the 16S rRNA gene sequences highlighted that the microbial diversity decreased as the degree of captivity increased. Furthermore, the results showed that the bacterial taxon WCHB1-41_c was substantially affected by lifestyle variations. qRT-PCR analysis revealed a paucity of genes related to butyrate production in the gut microbiome of AEs with a completely wild lifestyle, which may be due to the increased unfavorable environmental factors. Overall, these results demonstrate the distinct gut microbiome characteristics among AEs with a gradient of lifestyles and provide a basis for designing strategies to improve the well-being or conservation of this important animal species
    corecore