196 research outputs found

    ニホンゴ ニ γ‚ͺケル ゾクカク シγƒ₯γ‚΄γ€€γƒ²γ€€γƒ’γƒ„γ€€γ‚»γƒ„γ€€γƒŽγ€€γ‚΅γ‚€γ‚Ί

    Full text link

    Heine-Stieltjes correspondence and the polynomial approach to the standard pairing problem

    Get PDF
    A new approach for solving the Bethe ansatz (Gaudin-Richardson) equations of the standard pairing problem is established based on the Heine-Stieltjes correspondence. For k pairs of valence nucleons on n different single-particle levels, it is found that solutions of the Bethe ansatz equations can be obtained from one (k+1)Γ—(k+1) and one (n-1)Γ—(k+1) matrices, which are associated with the extended Heine-Stieltjes and Van Vleck polynomials, respectively. Since the coefficients in these polynomials are free from divergence with variations in contrast to the original Bethe ansatz equations, the approach provides an efficient and systematic way to solve the problem, which by extension, can also be used to solve a large class of Gaudin-type quantum many-body problems, including an efficient angular momentum projection method for multiparticle systems. Β© 2012 American Physical Society

    The Heine-Stieltjes correspondence and the polynomial approach to the standard pairing problem

    Get PDF
    A new approach for solving the Bethe ansatz (Gaudin-Richardson) equations of the standard pairing problem is established based on the Heine-Stieltjes correspondence. For kk pairs of valence nucleons on nn different single-particle levels, it is found that solutions of the Bethe ansatz equations can be obtained from one (k+1)x(k+1) and one (n-1)x(k+1) matrices, which are associated with the extended Heine-Stieltjes and Van Vleck polynomials, respectively. Since the coefficients in these polynomials are free from divergence with variations in contrast to the original Bethe ansatz equations, the approach thus provides with a new efficient and systematic way to solve the problem, which, by extension, can also be used to solve a large class of Gaudin-type quantum many-body problems and to establish a new efficient angular momentum projection method for multi-particle systems.Comment: ReVTeX, 4 pages, no figur

    Intranasal Immunization with Recombinant HA and Mast Cell Activator C48/80 Elicits Protective Immunity against 2009 Pandemic H1N1 Influenza in Mice

    Get PDF
    Pandemic influenza represents a major threat to global health. Vaccination is the most economic and effective strategy to control influenza pandemic. Conventional vaccine approach, despite being effective, has a number of major deficiencies including limited range of protection, total dependence on embryonated eggs for production, and time consuming for vaccine production. There is an urgent need to develop novel vaccine strategies to overcome these deficiencies.The major objective of this work was to develop a novel vaccine strategy combining recombinant haemagglutinin (HA) protein and a master cell (MC) activator C48/80 for intranasal immunization. We demonstrated in BALB/c mice that MC activator C48/80 had strong adjuvant activity when co-administered with recombinant HA protein intranasally. Vaccination with C48/80 significantly increased the serum IgG and mucosal surface IgA antibody responses against HA protein. Such increases correlated with stronger and durable neutralizing antibody activities, offering protection to vaccinated animals from disease progression after challenge with lethal dose of A/California/04/2009 live virus. Furthermore, protected animals demonstrated significant reduction in lung virus titers, minimal structural alteration in lung tissues as well as higher and balanced production of Th1 and Th2 cytokines in the stimulated splenocytes when compared to those without C48/80.The present study demonstrates that the novel vaccine approach of combining recombinant HA and mucosal adjuvant C48/80 is safe and effective in eliciting protective immunity in mice. Future studies on the mechanism of action of C48/80 and potential combination with other vaccine strategies such as prime and boost approach may help to induce even more potent and broad immune responses against viruses from various clades

    MLatom 3: Platform for machine learning-enhanced computational chemistry simulations and workflows

    Full text link
    Machine learning (ML) is increasingly becoming a common tool in computational chemistry. At the same time, the rapid development of ML methods requires a flexible software framework for designing custom workflows. MLatom 3 is a program package designed to leverage the power of ML to enhance typical computational chemistry simulations and to create complex workflows. This open-source package provides plenty of choice to the users who can run simulations with the command line options, input files, or with scripts using MLatom as a Python package, both on their computers and on the online XACS cloud computing at XACScloud.com. Computational chemists can calculate energies and thermochemical properties, optimize geometries, run molecular and quantum dynamics, and simulate (ro)vibrational, one-photon UV/vis absorption, and two-photon absorption spectra with ML, quantum mechanical, and combined models. The users can choose from an extensive library of methods containing pre-trained ML models and quantum mechanical approximations such as AIQM1 approaching coupled-cluster accuracy. The developers can build their own models using various ML algorithms. The great flexibility of MLatom is largely due to the extensive use of the interfaces to many state-of-the-art software packages and libraries

    Clinical and Cost-Effectiveness of PSYCHOnlineTHERAPY: Study Protocol of a Multicenter Blended Outpatient Psychotherapy Cluster Randomized Controlled Trial for Patients With Depressive and Anxiety Disorders

    Get PDF
    Introduction: Internet- and mobile-based interventions (IMIs) and their integration into routine psychotherapy (i.e., blended therapy) can offer a means of complementing psychotherapy in a flexible and resource optimized way. Objective: The present study will evaluate the non-inferiority, cost-effectiveness, and safety of two versions of integrated blended psychotherapy for depression and anxiety compared to standard cognitive behavioral therapy (CBT). Methods: A three-armed multicenter cluster-randomized controlled non-inferiority trial will be conducted comparing two implementations of blended psychotherapy (PSYCHOnlineTHERAPYfix/flex) compared to CBT. Seventy-five outpatient psychotherapists with a CBT-license will be randomized in a 1:1:1 ratio. Each of them is asked to include 12 patients on average with depressive or anxiety disorders resulting in a total sample size of N = 900. All patients receive up to a maximum of 16 psychotherapy sessions, either as routine CBT or alternating with Online self-help sessions (fix: 8/8; flex: 0–16). Assessments will be conducted at patient study inclusion (pre-treatment) and 6, 12, 18, and 24 weeks and 12 months post-inclusion. The primary outcome is depression and anxiety severity at 18 weeks post-inclusion (post-treatment) using the Patient Health Questionnaire Anxiety and Depression Scale. Secondary outcomes are depression and anxiety remission, treatment response, health-related quality of life, patient satisfaction, working alliance, psychotherapy adherence, and patient safety. Additionally, several potential moderators and mediators including patient characteristics and attitudes toward the interventions will be examined, complemented by ecological day-to-day digital behavior variables via passive smartphone sensing as part of an integrated smart-sensing sub-study. Data-analysis will be performed on an intention-to-treat basis with additional per-protocol analyses. In addition, cost-effectiveness and cost-utility analyses will be conducted from a societal and a public health care perspective. Additionally, qualitative interviews on acceptance, feasibility, and optimization potential will be conducted and analyzed. Discussion: PSYCHOnlineTHERAPY will provide evidence on blended psychotherapy in one of the largest ever conducted psychotherapy trials. If shown to be non-inferior and cost-effective, PSYCHOnlineTHERAPY has the potential to innovate psychotherapy in the near future by extending the ways of conducting psychotherapy. The rigorous health care services approach will facilitate a timely implementation of blended psychotherapy into standard care
    • …
    corecore