20 research outputs found

    Cylinder Position Servo Control Based on Fuzzy PID

    Get PDF
    The arbitrary position control of cylinder has always been the hard challenge in pneumatic system. We try to develop a cylinder position servo control method by combining fuzzy PID with the theoretical model of the proportional valve-controlled cylinder system. The pressure differential equation of cylinder, pressure-flow equation of proportional valve, and moment equilibrium equation of cylinder are established. And the mathematical models of the cylinder driving system are linearized. Then fuzzy PID control algorithm is designed for the cylinder position control, including the detail analysis of fuzzy variables and domain, fuzzy logic rules, and defuzzification. The stability of the proposed fuzzy PID controller is theoretically proved according to the small gain theorem. Experiments for targets position of 250 mm, 300 mm, and 350 mm were done and the results showed that the absolute error of the position control is less than 0.25 mm. And comparative experiment between fuzzy PID and classical PID verified the advantage of the proposed algorithm

    Hydrophilic domains compose of interlocking cation-? blocks for constructing hard actuator with robustness and rapid humidity responsiveness

    Get PDF
    Biomimetic actuators have seemingly infinite potential for use in previously unexplored areas. However, large stresses and a rapid water response are difficult to realize in soft actuators, owing to which their practical applicability is currently limited. In this paper, a new method for designing and fabricating humidity-responsive sturdy hard actuator. By combining a rigid matrix and hydrophilic water domains consisting of dynamic interlocking cation-Ď€ blocks, high-performance polymer actuator was synthesized that swell rapidly in response to a water gradient in their environment, resulting in unprecedentedly large stresses. More critically, the strong interlocking cation-Ď€ blocks reform and the intermolecular distance is reduced when the water is removed, allowing the deformed actuator to revert its original shape. The proposed design principle can potentially be extended to produce different types of sturdy actuators with rapid water responsiveness

    Psychometric properties of the Chinese version of the preoperative assessment of readiness tool among surgical patients

    Get PDF
    BackgroundThe evaluation of the surgical readiness of patients plays an important role in clinical care. Preoperative readiness assessment is needed to identify the inadequacy among surgical patients, which provides guide for interventions to improve patients’ preoperative readiness. However, there is a paucity of high-level, quality tool that evaluate surgical readiness of patients in China. The purpose of this study is to translate the Preoperative Assessment of Readiness Tool (PART) into Chinese and determine the reliability and validity of the Chinese version in the population of surgical patients.MethodsUsing a standard translation-backward method, the original English version of PART was translated into Chinese. A convenient sampling of 210 surgical patients was recruited from 6 hospitals in Zhejiang Province to test the psychometric properties of this scale including internal consistency, split-half reliability, content validity, structure validity, and floor/ceiling effect.ResultsA total of 194 patients (92%) completed questionnaires. The Chinese version of PART achieved Cronbach’s alphas 0.948 and McDonald’s omega coefficient 0.947, respectively, for the full scale. The estimated odd-even split-half reliability was 0.959. The scale-level content validity index was 0.867, and the items content validity index ranged from 0.83 to 1.0.The output of confirmatory factor analysis (CFA) revealed a two-factor model (χ2 = 510.96; df = 86; p < 0.001; root mean square error approximation = 0.08) with no floor/ceiling effect.ConclusionThe Chinese version of PART demonstrated acceptable reliability and validity among surgical patients. It can be used to evaluate patients’ preoperative preparation and help health professionals provide proper preoperative support

    Ultralong Stretchable Soft Actuator (US2A): Design, Modeling and Application

    No full text
    Abstract Actuator plays a significant role in soft robotics. This paper proposed an ultralong stretchable soft actuator (US2A) with a variable and sizeable maximum elongation. The US2A is composed of a silicone rubber tube and a bellows woven sleeve. The maximal extension can be conveniently regulated by just adjusting the wrinkles’ initial angle of the bellows woven sleeve. The kinematics of US2A could be obtained by geometrically analyzing the structure of the bellows woven sleeve when the silicone rubber tube is inflated. Based on the principle of virtual work, the actuating models have been established: the pressure-elongation model and the pressure-force model. These models reflect the influence of the silicone tube’s shell thickness and material properties on the pneumatic muscle’s performance, which facilitates the optimal design of US2A for various working conditions. The experimental results showed that the maximum elongation of the US2A prototype is 257%, and the effective elongation could be variably regulated in the range of 0 and 257%. The proposed models were also verified by pressure-elongation and pressure-force experiments, with an average error of 5% and 2.5%, respectively. Finally, based on the US2A, we designed a pneumatic rehabilitation glove, soft arm robot, and rigid-soft coupling continuous robot, which further verified the feasibility of US2A as a soft driving component

    Continuous adaptive gaits manipulation for three-fingered robotic hands via bioinspired fingertip contact events

    No full text
    The remarkable skill of changing its grasp status and relocating its fingers to perform continuous in-hand manipulation is essential for a multifingered anthropomorphic hand. A commonly utilized method of manipulation involves a series of basic movements executed by a high-level controller. However, it remains unclear how these primitives evolve into sophisticated finger gaits during manipulation. Here, we propose an adaptive finger gait-based manipulation method that offers real-time regulation by dynamically changing the primitive interval to ensure the force/moment balance of the object. Successful manipulation relies on contact events that act as triggers for real-time online replanning of multifinger manipulation. We identify four basic motion primitives of finger gaits and create a heuristic finger gait that enables the continuous object rotation of a round cup. Our experimental results verify the effectiveness of the proposed method. Despite the constant breaking and reengaging of contact between the fingers and the object during manipulation, the robotic hand can reliably manipulate the object without failure. Even when the object is subjected to interfering forces, the proposed method demonstrates robustness in managing interference. This work has great potential for application to the dexterous operation of anthropomorphic multifingered hands

    An Adaptive Hand Exoskeleton for Teleoperation System

    No full text
    Abstract Teleoperation can assist people to complete various complex tasks in inaccessible or high-risk environments, in which a wearable hand exoskeleton is one of the key devices. Adequate adaptability would be available to enable the master hand exoskeleton to capture the motion of human fingers and reproduce the contact force between the slave hand and its object. This paper presents a novel finger exoskeleton based on the cascading four-link closed-loop kinematic chain. Each finger has an independent closed-loop kinematic chain, and the angle sensors are used to obtain the finger motion including the flexion/extension and the adduction/abduction. The cable tension is changed by the servo motor to transmit the contact force to the fingers in real time. Based on the finger exoskeleton, an adaptive hand exoskeleton is consequently developed. In addition, the hand exoskeleton is tested in a master–slave system. The experiment results show that the adaptive hand exoskeleton can be worn without any mechanical constraints, and the slave hand can follow the motions of each human finger. The accuracy and the real-time capability of the force reproduction are validated. The proposed adaptive hand exoskeleton can be employed as the master hand to remotely control the humanoid five-fingered dexterous slave hand, thus, enabling the teleoperation system to complete complex dexterous manipulation tasks

    Automatic Pearl Classification Machine Based on a Multistream Convolutional Neural Network

    No full text
    corecore