13,176 research outputs found

    Deduction of the quantum numbers of low-lying states of 6-nucleon systems based on symmetry

    Get PDF
    The inherent nodal structures of the wavefunctions of 6-nucleon systems have been investigated. The existence of a group of six low-lying states dominated by L=0 has been deduced. The spatial symmetries of these six states are found to be mainly {4,2} and {2,2,2}.Comment: 8 pages, no figure

    Two-body scattering in a trap and a special periodic phenomenon sensitive to the interaction

    Full text link
    Two-body scattering of neutral particles in a trap is studied theoretically. The control of the initial state is realized by using optical traps. The collisions inside the trap occur repeatedly; thereby the effect of interaction can be accumulated. Two periodic phenomena with a shorter and a much longer period, respectively, are found. The latter is sensitive to the interaction. Instead of measuring the differential cross section as usually does, the measurement of the longer period and the details of the periodic behavior might be a valid source of information on weak interactions among neutral particles.Comment: 5 pages, 5 figure

    Symmetry Constraints and the Electronic Structures of a Quantum Dot with Thirteen Electrons

    Full text link
    The symmetry constraints imposing on the quantum states of a dot with 13 electrons has been investigated. Based on this study, the favorable structures (FSs) of each state has been identified. Numerical calculations have been performed to inspect the role played by the FSs. It was found that, if a first-state has a remarkably competitive FS, this FS would be pursued and the state would be crystal-like and have a specific core-ring structure associated with the FS. The magic numbers are found to be closely related to the FSs.Comment: 13 pages, 5 figure
    • …
    corecore