102 research outputs found

    A Combined XPS and Computational Study of the Chemical Reduction of BMP‐TFSI by Lithium

    Get PDF
    Employing density functional theory (DFT) calculations and X-ray photoelectron spectroscopy (XPS), we identify products of the reaction of the ionic liquid N,N-butylmethylpyrrolidinum bis(trifluoromethylsulfonyl)imide (BMP-TFSI) with lithium in order to model the initial chemical processes contributing to the formation of the solid electrolyte interphase in batteries. Besides lithium oxide, sulfide, carbide and fluoride, we find lithium cyanide or cyanamide as possible, thermodynamically stable product in the Li-poor regime, whilst Li3_{3}N is the stable product in the Li-rich regime. The thermodynamically controlled reaction products as well as larger fragments of TFSI persisting due to kinetic barriers could be identified by a comparison of experimentally and computationally determined core level binding energies

    Orientation and substrate interaction of adsorbed CO and NO molecules probed by circular dichroism in the angular distribution of photoelectrons

    Get PDF
    The sensitivity and utility of circular dichroism in the angular distribution of photoelectrons (CDAD) as a probe of molecular orientation is demonstrated for adsorbed CO and NO molecules. A comparison between measured CDAD spectra and calculated values for spatially oriented CO and NiCO clearly confirms the well-known perpendicular adsorption for CO on Ni(100), whereas for CO adsorbed on Fe(100) a tilted adsorption geometry was found. For NO/Ni(100) and for NO on the oxygen-preadsorbed Ni(100) surface, an average tilt angle of α=40±10° was observed. In the case of the oxygen-preadsorbed Ni(100) surface, a higher fraction of NO molecules was found to be in a tilted orientation than on the clean surface

    Raising the COx Methanation Activity of a Ru/γ-Al2O3 Catalyst by Activated Modification of Metal–Support Interactions

    Get PDF
    Ru/Al2O3 is a highly stable, but less active catalyst for methanation reactions. Herein we report an effective approach to significantly improve its performance in the methanation of CO2/H2 mixtures. Highly active and stable Ru/γ-Al2O3 catalysts were prepared by high-temperature treatment in the reductive reaction gas. Operando/in situ spectroscopy and STEM imaging reveals that the strongly improved activity, by factors of 5 and 14 for CO and CO2 methanation, is accompanied by a flattening of the Ru nanoparticles and the formation of highly basic hydroxylated alumina sites. We propose a modification of the metal–support interactions (MSIs) as the origin of the increased activity, caused by modification of the Al2O3 surface in the reductive atmosphere and an increased thermal mobility of the Ru nanoparticles, allowing their transfer to modified surface sites

    Quantitative assessment of the lumbar intervertebral disc via T2 shows excellent long-term reliability

    Get PDF
    Methodologies for the quantitative assessment of the spine tissues, in particular the intervertebral disc (IVD), have not been well established in terms of long-term reliability. This is required for designing prospective studies. 1H water T2 in the IVD (“T2”) has attained wider use in assessment of the lumbar intervertebral discs via magnetic resonance imaging. The reliability of IVD T2 measurements are yet to be established. IVD T2 was assessed nine times at regular intervals over 368 days on six anatomical slices centred at the lumbar spine using a spin-echo multi-echo sequence in 12 men. To assess repeatability, intra-class correlation co-efficients (ICCs), standard error of the measurement, minimal detectable difference and co-efficients of variation (CVs) were calculated along with their 95% confidence intervals. Bland-Altman analysis was also performed. ICCs were above 0.93, with the exception of nuclear T2 at L5/S1, where the ICC was 0.88. CVs of the central-slice nucleus sub-region ranged from 4.3% (average of all levels) to 10.1% for L5/S1 and between 2.2% to 3.2% for whole IVD T2 (1.8% for the average of all levels). Averaging between vertebral levels improved reliability. Reliability of measurements was least at L5/S1. ICCs of degenerated IVDs were lower. Test-retest reliability was excellent for whole IVD and good to excellent for IVD subregions. The findings help to establish the long-term repeatability of lumbar IVD T2 for the implementation of prospective studies and determination of significant changes within individuals

    Reversible growth of gold nanoparticles in the low-temperature water-gas shift reaction

    Get PDF
    Supported gold nanoparticles are widely studied catalysts and are among the most active known for the low-temperature water–gas shift reaction, which is essential in fuel and energy applications, but their practical application has been limited by their poor thermal stability. The catalysts deactivate on-stream via the growth of small Au nanoparticles. Using operando X-ray absorption and in situ scanning transmission electron microscopy, we report direct evidence that this process can be reversed by carrying out a facile oxidative treatment, which redisperses the gold nanoparticles and restores catalytic activity. The use of in situ methods reveals the complex dynamics of supported gold nanoparticles under reaction conditions and demonstrates that gold catalysts can be easily regenerated, expanding their scope for practical application

    Surface magnetism of iron and cobalt on W (110) probed with polarized synchrotron radiation

    No full text

    Magnetic properties of transition metal films and islands on W(110)

    No full text
    • 

    corecore