1,000 research outputs found

    Intensity-Based Registration of Freehand 3D Ultrasound and CT-scan Images of the Kidney

    Full text link
    This paper presents a method to register a pre-operative Computed-Tomography (CT) volume to a sparse set of intra-operative Ultra-Sound (US) slices. In the context of percutaneous renal puncture, the aim is to transfer planning information to an intra-operative coordinate system. The spatial position of the US slices is measured by optically localizing a calibrated probe. Assuming the reproducibility of kidney motion during breathing, and no deformation of the organ, the method consists in optimizing a rigid 6 Degree Of Freedom (DOF) transform by evaluating at each step the similarity between the set of US images and the CT volume. The correlation between CT and US images being naturally rather poor, the images have been preprocessed in order to increase their similarity. Among the similarity measures formerly studied in the context of medical image registration, Correlation Ratio (CR) turned out to be one of the most accurate and appropriate, particularly with the chosen non-derivative minimization scheme, namely Powell-Brent's. The resulting matching transforms are compared to a standard rigid surface registration involving segmentation, regarding both accuracy and repeatability. The obtained results are presented and discussed

    Observation of Dirac plasmons in a topological insulator

    Full text link
    Plasmons are the quantized collective oscillations of electrons in metals and doped semiconductors. The plasmons of ordinary, massive electrons are since a long time basic ingredients of research in plasmonics and in optical metamaterials. Plasmons of massless Dirac electrons were instead recently observed in a purely two-dimensional electron system (2DEG)like graphene, and their properties are promising for new tunable plasmonic metamaterials in the terahertz and the mid-infrared frequency range. Dirac quasi-particles are known to exist also in the two-dimensional electron gas which forms at the surface of topological insulators due to a strong spin-orbit interaction. Therefore,one may look for their collective excitations by using infrared spectroscopy. Here we first report evidence of plasmonic excitations in a topological insulator (Bi2Se3), that was engineered in thin micro-ribbon arrays of different width W and period 2W to select suitable values of the plasmon wavevector k. Their lineshape was found to be extremely robust vs. temperature between 6 and 300 K, as one may expect for the excitations of topological carriers. Moreover, by changing W and measuring in the terahertz range the plasmonic frequency vP vs. k we could show, without using any fitting parameter, that the dispersion curve is in quantitative agreement with that predicted for Dirac plasmons.Comment: 11 pages, 3 figures, published in Nature Nanotechnology (2013

    Three Ways of Combining Genotyping and Resequencing in Case-Control Association Studies

    Get PDF
    We describe three statistical results that we have found to be useful in case-control genetic association testing. All three involve combining the discovery of novel genetic variants, usually by sequencing, with genotyping methods that recognize previously discovered variants. We first consider expanding the list of known variants by concentrating variant-discovery in cases. Although the naive inclusion of cases-only sequencing data would create a bias, we show that some sequencing data may be retained, even if controls are not sequenced. Furthermore, for alleles of intermediate frequency, cases-only sequencing with bias-correction entails little if any loss of power, compared to dividing the same sequencing effort among cases and controls. Secondly, we investigate more strongly focused variant discovery to obtain a greater enrichment for disease-related variants. We show how case status, family history, and marker sharing enrich the discovery set by increments that are multiplicative with penetrance, enabling the preferential discovery of high-penetrance variants. A third result applies when sequencing is the primary means of counting alleles in both cases and controls, but a supplementary pooled genotyping sample is used to identify the variants that are very rare. We show that this raises no validity issues, and we evaluate a less expensive and more adaptive approach to judging rarity, based on group-specific variants. We demonstrate the important and unusual caveat that this method requires equal sample sizes for validity. These three results can be used to more efficiently detect the association of rare genetic variants with disease
    • …
    corecore