31 research outputs found

    Central administration of melanocortin agonist increased insulin sensitivity in diet-induced obese rats

    Get PDF
    AbstractIn this study, we examined the effects of intracerebroventricular administration of melanotan II (MTII), a melanocortin agonist, on insulin sensitivity in diet-induced obese (DIO) rats. Although MTII treatment significantly decreased food intake and body weight for 10 days, there was no significant difference in body weight between MTII and pair-fed groups. The insulin tolerance test showed that insulin sensitivity was significantly improved in the MTII group compared to the pair-fed group. Furthermore, MTII treatment increased the number of small-sized adipocytes in epididymal white adipose tissues, suggesting that MTII increased insulin sensitivity through action on the white adipose tissues in DIO rats

    Degradation of Mutant Protein Aggregates within the Endoplasmic Reticulum of Vasopressin Neurons

    Get PDF
    Misfolded or unfolded proteins in the ER are said to be degraded only after translocation or isolation from the ER. Here, we describe a mechanism by which mutant proteins are degraded within the ER. Aggregates of mutant arginine vasopressin (AVP) precursor were confined to ER-associated compartments (ERACs) connected to the ER in AVP neurons of a mouse model of familial neurohypophysial diabetes insipidus. The ERACs were enclosed by membranes, an ER chaperone and marker protein of phagophores and autophagosomes were expressed around the aggregates, and lysosomes fused with the ERACs. Moreover, lysosome-related molecules were present within the ERACs, and aggregate degradation within the ERACs was dependent on autophagic-lysosomal activity. Thus, we demonstrate that protein aggregates can be degraded by autophagic-lysosomal machinery within specialized compartments of the ER

    Resting energy expenditure depends on energy intake during weight loss in people with obesity: a retrospective cohort study

    Get PDF
    Abstract Objective: Resting energy expenditure (REE) decreases if there is reduced energy intake and body weight (BW). The decrease in REE could make it difficult for patients with obesity to maintain decreased BW. This study aimed to investigate the correlation among changes in REE, energy intake, and BW during the weight loss process in patients with obesity. Materials and methods: We conducted a retrospective cohort study of patients hospitalized for the treatment of obesity in Japan. Patients received fully controlled diet during hospitalization and performed exercises if able. REE was measured once a week using a hand-held indirect calorimetry. Energy intake was determined by actual dietary intake. Results: Of 44 inpatients with obesity, 17 were included in the analysis. Their BW decreased significantly after 1 week (−4.7 ± 2.0 kg, P < 0.001) and 2 weeks (−5.7 ± 2.2 kg, P < 0.001). The change in REE after 1 and 2 weeks was positively correlated with the energy intake/energy expenditure ratio (r = 0.66, P = 0.004 at 1 week, r = 0.71, P = 0.002 at 2 weeks). Using a regression equation (y = 0.5257x – 43.579), if the energy intake/energy expenditure ratio within the second week was 82.9%, the REE after 2 weeks was similar to the baseline level. There was no significant correlation between the change in REE and BW. Conclusions: Our data suggest that changes in REE depend on energy intake/energy expenditure ratio and that the decrease in REE can be minimized by matching energy intake to energy expenditure, even during the weight loss process

    Hybrid repair for Kommerell\u27s diverticulum and right aortic arch with aberrant right vertebral artery

    Get PDF
    Kommerell’s diverticulum (KD) is a rare aneurysm of the origin of an aberrant subclavian artery. Hybrid aortic arch repair for KD is being performed more often. We report hybrid arch repair for KD in a 63-year-old man with a right aortic arch and aberrant right vertebral artery, an extremely rare variant. We performed total arch replacement to completely reconstruct the five cervical arteries with elephant trunk to create an adequate landing zone, followed by second-stage endovascular stent-grafting from the ascending aorta to the proximal descending aorta

    d-Allulose Improves Endurance and Recovery from Exhaustion in Male C57BL/6J Mice

    No full text
    d-Allulose, a rare sugar, improves glucose metabolism and has been proposed as a candidate calorie restriction mimetic. This study aimed to investigate the effects of d-allulose on aerobic performance and recovery from exhaustion and compared them with the effects of exercise training. Male C57BL/6J mice were subjected to exercise and allowed to run freely on a wheel. Aerobic performance was evaluated using a treadmill. Glucose metabolism was analyzed by an intraperitoneal glucose tolerance test (ipGTT). Skeletal muscle intracellular signaling was analyzed by Western blotting. Four weeks of daily oral administration of 3% d-allulose increased running distance and shortened recovery time as assessed by an endurance test. d-Allulose administration also increased the maximal aerobic speed (MAS), which was observed following treatment for &gt;3 or 7 days. The improved performance was associated with lower blood lactate levels and increased liver glycogen levels. Although d-allulose did not change the overall glucose levels as determined by ipGTT, it decreased plasma insulin levels, indicating enhanced insulin sensitivity. Finally, d-allulose enhanced the phosphorylation of AMP-activated protein kinase and acetyl-CoA carboxylase and the expression of peroxisome proliferator-activated receptor &gamma; coactivator 1&alpha;. Our results indicate that d-allulose administration enhances endurance ability, reduces fatigue, and improves insulin sensitivity similarly to exercise training. d-Allulose administration may be a potential treatment option to alleviate obesity and enhance aerobic exercise performance

    BmDJ-1 is a key regulator of oxidative modification in the development of the silkworm, Bombyx mori.

    Get PDF
    We cloned cDNA for the Bombyx mori DJ-1 protein (BmDJ-1) from the brains of larvae. BmDJ-1 is composed of 190 amino acids and encoded by 672 nucleotides. Northern blot analysis showed that BmDJ-1 is transcribed as a 756-bp mRNA and has one isoform. Reverse transcriptase (RT)-PCR experiments revealed that the BmDJ-1 was present in the brain, fatbody, Malpighian tubule, ovary and testis but present in only low amounts in the silkgland and hemocyte of day 4 fifth instar larvae. Immunological analysis demonstrated the presence of BmDJ-1 in the brain, midgut, fatbody, Malpighian tubule, testis and ovary from the larvae to the adult. We found that BmDJ-1 has a unique expression pattern through the fifth instar larval to adult developmental stage. We assessed the anti-oxidative function of BmDJ-1 using rotenone (ROT) in day 3 fifth instar larvae. Administration of ROT to day 3 fifth instar larvae, together with exogenous (BmNPV-BmDJ-1 infection for 4 days in advance) BmDJ-1, produced significantly lower 24-h mortality in BmDJ-1 groups than in the control. 2D-PAGE revealed an isoelectric point (pI) shift to an acidic form for BmDJ-1 in BmN4 cells upon ROT stimulus. Among the factors examined for their effects on expression level of BmDJ-1 in the hemolymph, nitric oxide (NO) concentration was identified based on dramatic developmental stage-dependent changes. Administration of isosorbide dinitrate (ISDN), which is an NO donor, to BmN4 cells produced increased expression of BmDJ-1 compared to the control. These results suggest that BmDJ-1 might control oxidative stress in the cell due to NO and serves as a development modulation factor in B. mori

    Influence of sex on sympathetic vasomotor outflow responses to passive leg raising in young individuals

    No full text
    Abstract The purpose of this study was to clarify sex differences in the inhibition of sympathetic vasomotor outflow which is caused by the loading of cardiopulmonary baroreceptors. Ten young males and ten age-matched females participated. The participants underwent a passive leg raising (PLR) test wherein they were positioned supine (baseline, 0º), and their lower limbs were lifted passively at 10º, 20º, 30º, and 40º. Each angle lasted for 3 min. Muscle sympathetic nerve activity (MSNA) was recorded via microneurography of the left radial nerve. Baseline MSNA was lower in females compared to males. MSNA burst frequency was decreased during the PLR in both males (− 6.2 ± 0.4 bursts/min at 40º) and females (− 6.5 ± 0.4 bursts/min at 40º), but no significant difference was detected between the two groups (P = 0.61). These results suggest that sex has minimal influence on the inhibition of sympathetic vasomotor outflow during the loading of cardiopulmonary baroreceptors in young individuals
    corecore