148 research outputs found
Nutritional properties of dietary omega-3-enriched phospholipids
Dietary fatty acids regulate several physiological functions. However, to exert their properties, they have to be present in the diet in an optimal balance. Particular attention has been focused on tissue highly polyunsaturated fatty acids (HPUFAs) n-6/n-3 ratio, influenced by the type and the esterified form of dietary fatty acids. Dietary EPA and DHA when esterified to phospholipids (PLs) are more efficiently incorporated into tissue PLs and seem to possess peculiar properties through specific mechanism(s) of action, such as the capacity to affect endocannabinoid biosynthesis at much lower doses than EPA and DHA in triglyceride form, probably because of the above mentioned higher incorporation into tissue PLs. Downregulation of the endocannabinoid system seems to mediate the positive effects exerted by omega-3-enriched PLs on several parameters of metabolic syndrome. PLs are one of the major dietary forms of EPA and DHA we are exposed to with the everyday diet; therefore, it is not surprising that it guarantees an effective EPA and DHA nutritional activity. Future studies should address whether EPA and DHA in PL form are also more effective than other formulations in ameliorating other pathological conditions where n-3 HPUFAs seem to exert beneficial activities such as cancer and psychiatric disorders
Metabolic interactions between vitamin A and conjugated linoleic acid
Lipid-soluble molecules share several aspects of their physiology due to their common adaptations to a hydrophilic environment, and may interact to regulate their action in a tissue-specific manner. Dietary conjugated linoleic acid (CLA) is a fatty acid with a conjugated diene structure that is found in low concentrations in ruminant products and available as a nutritional supplement. CLA has been shown to increase tissue levels of retinol (vitamin A alcohol) and its sole specific circulating carrier protein retinol-binding protein (RBP or RBP4). However, the precise mechanism of this action has not been elucidated yet. Here, we provide a summary of the current knowledge in this specific area of research and speculate that retinol and CLA may compete for catabolic pathways modulated by the activity of PPAR- and RXR heterodimer. We also present preliminary data that may position PPAR- at the crossroads between the metabolism of lipids and vitamin
Anti-neuroinflammatory effects of conjugated linoleic acid isomers, c9,t11 and t10,c12, on activated BV-2 microglial cells
Conjugated linoleic acid (CLA) isomers exhibit anti-inflammatory properties within the central nervous system (CNS). This study investigated the effects of CLA isomers c9,t11 and t10,c12 on fatty acid (FA) and N-acylethanolamine (NAE) profiles and their association with pro-inflammatory molecule expression in BV-2 microglia cell line, the CNS's resident immune cells responsible for maintaining neuronal activity and immune homeostasis. BV-2 cells were treated with 25 μM of c9,t11-CLA, t10,c12-CLA, or oleic acid (OA) for 24 h, followed by lipopolysaccharide (LPS) stimulation. After treatment, the cell's FA and NAE profiles and pro-inflammatory molecule expression were analyzed. Our results demonstrated that CLA isomers mitigate LPS-induced morphological changes in BV-2 cells and reduce gene expression and protein levels of inflammatory markers. This effect was linked to an upregulation of acyl-CoA oxidase 1, a key enzyme in the anti-inflammatory peroxisomal beta-oxidation pathway that efficiently metabolizes CLA isomers. Notably, t10,c12-CLA significantly suppressed stearoyl-CoA desaturase 1, impacting monounsaturated fatty acid synthesis. The NAEs profile was remarkably altered by CLA isomers, with a significant release of the anti-neuroinflammatory mediator docosahexaenoic acid (DHA)-derived N-acylethanolamine (DHAEA). In conclusion, our findings suggest that the anti-neuroinflammatory effects of CLA isomers are due to their unique influences on FA metabolism and the modulation of bioactive FA-derived NAEs, highlighting a potential strategy for nutritional intervention in conditions characterized by neuroinflammation
Conjugated Linoleic Acid and Brain Metabolism: A Possible Anti-Neuroinflammatory Role Mediated by PPARα Activation
Fatty acids play a crucial role in the brain as specific receptor ligands and as precursors of
bioactive metabolites. Conjugated linoleic acid (CLA), a group of positional and geometric
isomers of linoleic acid (LA, 18:2 n-6) present in meat and dairy products of ruminants and
synthesized endogenously in non-ruminants and humans, has been shown to possess
different nutritional properties associated with health benefits. Its ability to bind to
peroxisome proliferator-activated receptor (PPAR)
α, a nuclear receptor key regulator of
fatty acid metabolism and inflammatory responses, partly mediates these beneficial effects.
CLA is incorporated and metabolized into brain tissue where induces the biosynthesis of
endogenous PPAR
α ligands palmitoylethanolamide (PEA) and oleoylethanolamide (OEA),
likely through a positive feedback mechanism where PPAR
α activation sustains its own
cellular effects through ligand biosynthesis. In addition to PPAR
α, PEA and OEA may as well
bind to other receptors such as TRPV1, further extending CLA own anti-neuroinflammatory
actions. Future studies are needed to investigate whether dietary CLA may exert antiinflammatory
activity, particularly in the setting of neurodegenerative diseases and
neuropsychiatric disorders with a neuroinflammatory basis
Physiological response to lipid peroxidation in ischemia and reperfusion during carotid endarterectomy
<p>Abstract</p> <p>Background</p> <p>In this study we aimed to assess lipid peroxidation during carotid endarterectomy by the formation of PUFA hydroperoxides (PUFAHP) and isoprostanes (IP) and concomitant peroxisomal beta-oxidation as a physiological mechanism to limit their concentration. Two markers of peroxisomal beta oxidation have been evaluated, formation of 2,3 dinor from IP and conjugated esadecadienoic acid (CD 16:2) from peroxisomal beta-oxidation of conjugated linoleic acid (CLA), an unusual fatty acid present in small concentration in our diet and preferentially beta-oxidised in peroxisomes.</p> <p>The study was conducted on 30 patients undergoing carotid endarterectomy. Blood samplings were performed before, during endarterectomy in the "ischemic phase", and 30 seconds, 30 minutes and 2 hours after reperfusion.</p> <p>Results</p> <p>The results showed that PUFAHP increased significantly after 30 min of reperfusion in patients with controlateral stenosis > 50%, and steeply decreased after 2 hour of reperfusion. Interestingly, IP increased in a similar fashion of PUFAHP but never significantly. Both ratios CD16:2/CLA and DIN/IP also increased significantly after 30 min of reperfusion to decrease thereafter.</p> <p>Conclusions</p> <p>Our data show that lipid peroxidation takes place only in patients with high controlateral stenosis and within 2 hours occurs a physiological response aimed to decrease IP and PUFAHP by increasing their catabolism in peroxisomes.</p
Anti-Inflammatory Effect of Beta-Caryophyllene Mediated by the Involvement of TRPV1, BDNF and trkB in the Rat Cerebral Cortex after Hypoperfusion/Reperfusion
We have previously shown that bilateral common carotid artery occlusion followed by reperfusion (BCCAO/R) is a model to study early hypoperfusion/reperfusion-induced changes in biomarkers of the tissue physiological response to oxidative stress and inflammation. Thus in this study, we investigate with immunochemical assays if a single dose of beta-caryophyllene (BCP), administered before the BCCAO/R, can modulate the TRPV1, BDNF, and trkB receptor in the brain cortex; the glial markers GFAP and Iba1 were also examined. Frontal and temporal-occipital cortical regions were analyzed in two groups of male rats, sham-operated and submitted to BCCAO/R. Six hours before surgery, one group was gavage fed a dose of BCP (40 mg/per rat in 300 mu L of sunflower oil), the other was pre-treated with the vehicle alone. Western blot analysis showed that, in the frontal cortex of vehicle-treated rats, the BCCAO/R caused a TRPV1 decrease, an increment of trkB and GFAP, no change in BDNF and Iba1. The BCP treatment caused a decrease of BDNF and an increase of trkB levels in both sham and BCCAO/R conditions while inducing opposite changes in the case of TRPV1, whose levels became higher in BCCAO/R and lower in sham conditions. Present results highlight the role of BCP in modulating early events of the cerebral inflammation triggered by the BCCAO/R through the regulation of TRPV1 and the BDNF-trkB system
Impact of prenatal THC exposure on lipid metabolism and microbiota composition in rat offspring
Objective: Recent studies have demonstrated that prenatal exposure to the psychoactive ingredient of cannabis that is tetrahydrocannabinol (THC) disrupts fatty acid (FA) signaling pathways in the developing brain, potentially linking to psychopathologic consequences. Our research aims to investigate whether changes in midbrain FA metabolism are linked to modifications in peripheral metabolism of FAs and shifts in microbiota composition.
Methods: In order to model prenatal exposure to THC (PTE) in rats, Sprague Dawley dams were systemically administered with THC (2 mg/kg, s.c.) or vehicle once daily from gestational day 5–20. To evaluate the metabolic impact of PTE in the offspring during preadolescence (postnatal day, PND, 25–28), we analyzed FA profiles and their bioactive metabolites in liver and midbrain tissues, and microbiota alterations.
Results: Our findings indicate that PTE leads to sex-specific metabolic changes. In both sexes, PTE resulted in increased liver de novo lipogenesis (DNL) and alterations in FA profiles, as well as changes in N-acylethanolamines (NAEs), ligands of peroxisome proliferator-activated receptor alpha (PPAR-α). In females only, PTE influenced gene expression of PPAR-α and fibroblast growth factor 21 (Fgf21). In male offspring only, PTE was associated with significantly reduced fasting glycaemia and with alterations in the levels of midbrain NAEs. Our analysis of the progeny gut microbiota revealed sex-dependent effects of PTE, notably an increased abundance of Ileibacterium in PTE-exposed male offspring, a change previously associated with the long-term effects of a maternal unbalanced diet.
Conclusions: Our data suggest that in male PTE offspring a reduced fasting glycaemia, resulting from increased liver DNL and the absence of a compensatory effect by Ppar-α and FGF21 on glycemic homeostasis, are associated to alterations in midbrain NAEs ligands of PPAR-α. These metabolic changes within the midbrain, along with Ileibacterium abundance, may partly elucidate the heightened susceptibility to psychopathologic conditions previously observed in male offspring following PTE
Dietary triacylglycerols with palmitic acid in the sn-2 position modulate levels of N-acylethanolamides in rat tissues
BACKGROUND:
Several evidences suggest that the position of palmitic acid (PA) in dietary triacylglycerol (TAG) influences different biological functions. We aimed at evaluating whether dietary fat with highly enriched (87%) PA in sn-2 position (Hsn-2 PA), by increasing PA incorporation into tissue phospholipids (PL), modifies fatty acid profile and biosynthesis of fatty acid-derived bioactive lipids, such as endocannabinoids and their congeners.
STUDY DESIGN:
Rats were fed for 5 weeks diets containing Hsn-2 PA or fat with PA randomly distributed in TAG with 18.8% PA in sn-2 position (Lsn-2 PA), and similar total PA concentration. Fatty acid profile in different lipid fractions, endocannabinoids and congeners were measured in intestine, liver, visceral adipose tissue, muscle and brain.
RESULTS:
Rats on Hsn-2 PA diet had lower levels of anandamide with concomitant increase of its congener palmitoylethanolamide and its precursor PA into visceral adipose tissue phospholipids. In addition, we found an increase of oleoylethanolamide, an avid PPAR alpha ligand, in liver, muscle and brain, associated to higher levels of its precursor oleic acid in liver and muscle, probably derived by elongation and further delta 9 desaturation of PA. Changes in endocannabinoids and congeners were associated to a decrease of circulating TNF alpha after LPS challenge, and to an improved feed efficiency.
CONCLUSIONS:
Dietary Hsn-2 PA, by modifying endocannabinoids and congeners biosynthesis in different tissues may potentially concur in the physiological regulation of energy metabolism, brain function and body fat distribution
Intake of palmitic acid and its association with metabolic flexibility in middle-aged individuals: a preliminary study
Objective: This study aimed to assess the relationship between dietary palmitic acid (PA) intake and its association with body fat deposition and metabolic flexibility (MF) in middle-aged healthy individuals.
Methods: Fifteen healthy participants (n = 15; 6 males, 9 females) with a mean age of 54 were enlisted. They were subjected to graded exercise tests using a cycle ergometer coupled with a calorimeter. Respiratory gas exchange was evaluated to determine two MF parameters. First, the MF index was derived by multiplying peak fatty acid oxidation (PFO) per kg of fat-free mass (FFM) with the percentage of VO2max at PFO. The second parameter, peak energy
substrates’ oxidation (aka PESO), was computed by aggregating the kilocalories from PFO and peak carbohydrate oxidation, normalized per kg FFM. Dietary intake was gauged using a 7-day dietary record. Spearman’s regression was employed to analyze the association
between dietary intake of specific fat classes, PA, MF parameters, and body fat percentage.
Results: Preliminary results demonstrate that dietary saturated fatty acids (SFA) within physiological limits correlate with enhanced substrate oxidation capacity. This suggests augmented MF in middle-aged subjects. Among dietary SFA, PA was identified as the
primary factor in this favorable correlation.
Conclusions: Our initial observations, even though preliminary, strongly suggest a beneficial association between PA intake, MF, and body fat percentage. This underscores the potential nutritional importance of PA in promoting MF
Accumulation and aberrant composition of cholesteryl esters in Scrapie-infected N2a cells and C57BL/6 mouse brains
<p>Abstract</p> <p>Objective</p> <p>Cholesterol changes have been described in prion-cell models and in experimental rodent scrapie; yet, the pattern of this association is still controversial.</p> <p>Methods</p> <p>To shed light on the matter, we analysed and compared cholesterol variations in ScN2a cells and in brains of Scrapie-infected C57Bl/6 mice, using two different methods: a fluorimetric-enzymatic cholesterol assay, and high performance liquid chromatography-mass spectroscopy (HPLC-MS).</p> <p>Results</p> <p>Compared to uninfected controls, similar cholesterol metabolism anomalies were observed in infected cells and brains by both methods; however, only HPLC-MS revealed statistically significant cholesterol variations, particularly in the cholesteryl esters (CE) fraction. HPLC-MS analyses also revealed different fatty acid composition of the CE fraction in cells and brains. In N2a cells, their profile reflected that of serum, while in normal brains cholesteryl-linoleate only was found at detectable levels. Following prion infection, most CE species were increased in the CE pool of ScN2a cells, whereas a conspicuous amount of cholesteryl-arachidonate only was found to contribute to the cerebral increase of CE. Of interest, oral pravastatin administration to Scrapie-infected mice, was associated with a significant reduction of cerebral free cholesterol (FC) along with a concomitant further increase of the CE pool, which included increased amounts of both cholesteryl-linoleate and cholesteryl-arachidonate.</p> <p>Conclusion</p> <p>Although mechanistic studies are needed to establish the pathophysiological relevance of changes in cerebral CE concentrations, to the best of our knowledge this is the first report to provide evidence of increased cholesterol esterification in brains of prion-infected mice, untreated and treated with pravastatin.</p
- …