177 research outputs found
Constraining the Inflationary Equation of State
We explore possible constraints on the inflationary equation state: p=w\rho.
While w must be close to -1 for those modes that contribute to the observed
power spectrum, for those modes currently out of experimental reach, the
constraints on w are much weaker, with only w<-1/3 as an a priori requirement.
We find, however, that limits on the reheat temperature and the inflationary
energy scale constrain w further, though there is still ample parameter space
for a vastly different (accelerating) equation of state between the end of
quasi-de Sitter inflation and the beginning of the radiation-dominated era. In
the event that such an epoch of acceleration could be observed, we review the
consequences for the primordial power spectrum.Comment: 12 pages, 2 figur
A Simple n-Dimensional Intrinsically Universal Quantum Cellular Automaton
We describe a simple n-dimensional quantum cellular automaton (QCA) capable
of simulating all others, in that the initial configuration and the forward
evolution of any n-dimensional QCA can be encoded within the initial
configuration of the intrinsically universal QCA. Several steps of the
intrinsically universal QCA then correspond to one step of the simulated QCA.
The simulation preserves the topology in the sense that each cell of the
simulated QCA is encoded as a group of adjacent cells in the universal QCA.Comment: 13 pages, 7 figures. In Proceedings of the 4th International
Conference on Language and Automata Theory and Applications (LATA 2010),
Lecture Notes in Computer Science (LNCS). Journal version: arXiv:0907.382
Bounds on masses of bulk fields in string compactifications
In string compactification on a manifold X, in addition to the string scale
and the normal scales of low-energy particle physics, there is a Kaluza-Klein
scale 1/R associated with the size of X. We present an argument that generic
string models with low-energy supersymmetry have, after moduli stabilization,
bulk fields with masses which are parametrically lighter than 1/R. We discuss
the implications of these light states for anomaly mediation and gaugino
mediation scenarios.Comment: 15 page
Epidemiology of lobomycosis-like disease in bottlenose dolphins <i>Tursiops</i> spp. from South America and southern Africa
We report on the epidemiology of lobomycosis-like disease (LLD), a cutaneous disorder evoking lobomycosis, in 658 common bottlenose dolphins Tursiops truncatus from South America and 94 Indo-Pacific bottlenose dolphins T. aduncus from southern Africa. Photographs and stranding records of 387 inshore residents, 60 inshore non-residents and 305 specimens of undetermined origin (inshore and offshore) were examined for the presence of LLD lesions from 2004 to 2015. Seventeen residents, 3 non-residents and 1 inshore dolphin of unknown residence status were positive. LLD lesions appeared as single or multiple, light grey to whitish nodules and plaques that may ulcerate and increase in size over time. Among resident dolphins, prevalence varied significantly among 4 communities, being low in Posorja (2.35%, n = 85), Ecuador, and high in Salinas, Ecuador (16.7%, n = 18), and Laguna, Brazil (14.3%, n = 42). LLD prevalence increased in 36 T. truncatus from Laguna from 5.6% in 2007-2009 to 13.9% in 2013-2014, albeit not significantly. The disease has persisted for years in dolphins from Mayotte, Laguna, Salinas, the Sanquianga National Park and Bahía Málaga (Colombia) but vanished from the Tramandaí Estuary and the Mampituba River (Brazil). The geographical range of LLD has expanded in Brazil, South Africa and Ecuador, in areas that have been regularly surveyed for 10 to 35 yr. Two of the 21 LLD-affected dolphins were found dead with extensive lesions in southern Brazil, and 2 others disappeared, and presumably died, in Ecuador. These observations stress the need for targeted epidemiological, histological and molecular studies of LLD in dolphins, especially in the Southern Hemisphere
Supersymmetric string model with 30 kappa--symmetries in an extended D=11 superspace and 30/ 32 BPS states
A supersymmetric string model in the D=11 superspace maximally extended by
antisymmetric tensor bosonic coordinates, , is proposed. It
possesses 30 -symmetries and 32 target space supersymmetries. The usual
preserved supersymmetry--symmetry correspondence suggests that it
describes the excitations of a BPS state preserving all but two
supersymmetries. The model can also be formulated in any superspace, n=32 corresponding to D=11. It may also be treated as a
`higher--spin generalization' of the usual Green--Schwarz superstring. Although
the global symmetry of the model is a generalization of the super--Poincar\'e
group, , it may be
formulated in terms of constrained OSp(2n|1) orthosymplectic supertwistors. We
work out this supertwistor realization and its Hamiltonian dynamics.
We also give the supersymmetric p-brane generalization of the model. In
particular, the supersymmetric membrane model describes
excitations of a 30/32 BPS state, as the supersymmetric
string does, while the supersymmetric 3-brane and 5-brane correspond,
respectively, to 28/32 and 24/32 BPS states.Comment: 23 pages, RevTex4. V2: minor corrections in title and terminology,
some references and comments adde
The Ekpyrotic Universe: Colliding Branes and the Origin of the Hot Big Bang
We propose a cosmological scenario in which the hot big bang universe is
produced by the collision of a brane in the bulk space with a bounding orbifold
plane, beginning from an otherwise cold, vacuous, static universe. The model
addresses the cosmological horizon, flatness and monopole problems and
generates a nearly scale-invariant spectrum of density perturbations without
invoking superluminal expansion (inflation). The scenario relies, instead, on
physical phenomena that arise naturally in theories based on extra dimensions
and branes. As an example, we present our scenario predominantly within the
context of heterotic M-theory. A prediction that distinguishes this scenario
from standard inflationary cosmology is a strongly blue gravitational wave
spectrum, which has consequences for microwave background polarization
experiments and gravitational wave detectors.Comment: 67 pages, 4 figures. v2,v3: minor corrections, references adde
Baryogenesis in Models with a Low Quantum Gravity Scale
We make generic remarks about baryogenesis in models where the scale of
quantum gravity is much below the Planck scale. These correspond to M-theory
vacua with a large volume for the internal space. Baryogenesis is a challenge,
particularly for M_s \lappeq 10^5 GeV, because there is an upper bound on the
reheat temperature of the Universe, and because certain baryon number violating
operators must be suppressed. We discuss these constraints for different values
of , and illustrate with a toy model the possibility of using horizontal
family symmetries to circumvent them.Comment: 15 pages, latex, one figure. References adde
Black Hole Thermodynamics and Statistical Mechanics
We have known for more than thirty years that black holes behave as
thermodynamic systems, radiating as black bodies with characteristic
temperatures and entropies. This behavior is not only interesting in its own
right; it could also, through a statistical mechanical description, cast light
on some of the deep problems of quantizing gravity. In these lectures, I review
what we currently know about black hole thermodynamics and statistical
mechanics, suggest a rather speculative "universal" characterization of the
underlying states, and describe some key open questions.Comment: 35 pages, Springer macros; for the Proceedings of the 4th Aegean
Summer School on Black Hole
Modern temporal network theory: A colloquium
The power of any kind of network approach lies in the ability to simplify a
complex system so that one can better understand its function as a whole.
Sometimes it is beneficial, however, to include more information than in a
simple graph of only nodes and links. Adding information about times of
interactions can make predictions and mechanistic understanding more accurate.
The drawback, however, is that there are not so many methods available, partly
because temporal networks is a relatively young field, partly because it more
difficult to develop such methods compared to for static networks. In this
colloquium, we review the methods to analyze and model temporal networks and
processes taking place on them, focusing mainly on the last three years. This
includes the spreading of infectious disease, opinions, rumors, in social
networks; information packets in computer networks; various types of signaling
in biology, and more. We also discuss future directions.Comment: Final accepted versio
Integrating sequence and array data to create an improved 1000 Genomes Project haplotype reference panel
A major use of the 1000 Genomes Project (1000GP) data is genotype imputation in genome-wide association studies (GWAS). Here we develop a method to estimate haplotypes from low-coverage sequencing data that can take advantage of single-nucleotide polymorphism (SNP) microarray genotypes on the same samples. First the SNP array data are phased to build a backbone (or 'scaffold') of haplotypes across each chromosome. We then phase the sequence data 'onto' this haplotype scaffold. This approach can take advantage of relatedness between sequenced and non-sequenced samples to improve accuracy. We use this method to create a new 1000GP haplotype reference set for use by the human genetic community. Using a set of validation genotypes at SNP and bi-allelic indels we show that these haplotypes have lower genotype discordance and improved imputation performance into downstream GWAS samples, especially at low-frequency variants. © 2014 Macmillan Publishers Limited. All rights reserved
- …