14 research outputs found

    Synergic adsorption of Pb2+ and reactive dye-RB5 on two series of organomodified bentonites

    No full text
    Two series of organobentonites (OBs) were synthesized from Na+-exchanged bentonite clay from Bogovina, Serbia. In the first series the starting material was modified using hexadecyltrimethylammonium (HDTMA(+)) ion in the amounts corresponding to 0.2, 0.5, 1.0 and 2.0 of the CEC value. The second series was obtained using quaternary alkyl ammonium cations (QAACs) with different alkyl chain lengths: hexadecyltrimethylammonium (HDTMA(+)), dodecyltrimethylammonium (DDTMA(+)) and tetramethylammonium (TMA(+)) ions. The synthesized OBs were characterized. The adsorption of anionic reactive dye Reactive Black 5 (RB5) and Pb2+ from single component solutions and their hi-component solution was investigated for both series of OBs. The adsorptive properties of the OBs were correlated to the amount and type of incorporated QAACs. The correlation was tested using different mathematical models and best fits were found. Experimental results showed that simultaneous adsorption of RB5 and Pb2+ exhibited synergic effect. The adsorption capacity for both RB5 and Pb2+ was higher in their hi-component solution than in single-component solutions. These results indicate the creation of new adsorption sites during the simultaneous adsorption

    Positioning Europe for the EPITRANSCRIPTOMICS challenge

    No full text
    The genetic alphabet consists of the four letters: C, A, G, and T in DNA and C,A,G, and U in RNA. Triplets of these four letters jointly encode 20 different amino acids out of which proteins of all organisms are built. This system is universal and is found in all kingdoms of life. However, bases in DNA and RNA can be chemically modified. In DNA, around 10 different modifications are known, and those have been studied intensively over the past 20 years. Scientific studies on DNA modifications and proteins that recognize them gave rise to the large field of epigenetic and epigenomic research. The outcome of this intense research field is the discovery that development, ageing, and stem-cell dependent regeneration but also several diseases including cancer are largely controlled by the epigenetic state of cells. Consequently, this research has already led to the first FDA approved drugs that exploit the gained knowledge to combat disease. In recent years, the ~150 modifications found in RNA have come to the focus of intense research. Here we provide a perspective on necessary and expected developments in the fast expanding area of RNA modifications, termed epitranscriptomics. © 2018, © 2018 Informa UK Limited, trading as Taylor & Francis Group
    corecore