1,571 research outputs found

    Local simulation of singlet statistics for restricted set of measurement

    Full text link
    The essence of Bell's theorem is that, in general, quantum statistics cannot be reproduced by local hidden variable (LHV) model. This impossibility is strongly manifested while analyzing the singlet state statistics for Bell-CHSH violations. In this work, we provide various subsets of two outcome POVMs for which a local hidden variable model can be constructed for singlet state.Comment: 2 column, 5 pages, 4 figures, new references, abstract modified, accepted in JP

    Low-Mass Dileptons at the CERN-SpS: Evidence for Chiral Restoration?

    Get PDF
    Using a rather complete description of the in-medium ρ\rho spectral function - being constrained by various independent experimental information - we calculate pertinent dilepton production rates from hot and dense hadronic matter. The strong broadening of the ρ\rho resonance entails a reminiscence to perturbative qqˉq\bar q annihilation rates in the vicinity of the phase boundary. The application to dilepton observables in Pb(158AGeV)+Au collisions - incorporating recent information on the hadro-chemical composition at CERN-SpS energies - essentially supports the broadening scenario. Possible implications for the nature of chiral symmetry restoration are outlined.Comment: 6 pages ReVTeX including 5 eps-figure

    Ice shelves as floating channel flows of viscous power-law fluids

    Get PDF
    IB is supported by a Science and Technology Facilities Council studentship.We explain the force balance in flowing marine ice sheets and the ice shelves they often feed. Treating ice as a viscous shear-thinning power law fluid, we develop an asymptotic (late-time) theory in two cases: the presence or absence of contact with sidewalls. Most real-world situations fall somewhere between the two extreme cases considered. The solution when sidewalls are absent is a fairly simple generalization of that found by Robison (JFM, 648, 363). In this case, we obtain the equilibrium grounding line thickness using a simple computer model and have an analytic approximation. For shelves in contact with sidewalls, we obtain an asymptotic theory valid for long shelves. We determine when this is. Our theory is based on the velocity profile across the channel being a generalized version of Poiseuille flow, which works when lateral shear dominates the force balance. We conducted experiments using a laboratory model for ice. This was a suspension of xanthan in water, at a concentration of 0.5% by mass. The model has n ≈ 3.8, similar to that of ice. Our theories agreed extremely well with our experiments for all relevant parameters (front position, thickness profile, lateral velocity profile, longitudinal velocity gradient and grounding line thickness). We also saw detailed features similar to natural systems. Thus, we believe we have understood the dominant force balance in both types of ice shelf. Combining our understanding of the forces in the system with a basic model for basal melting and iceberg formation, we uncovered some instabilities of the natural system. Laterally confined ice shelves can rapidly disintegrate but ice tongues cannot. However, ice tongues can be shortened until they no longer exist, at which point the sheet becomes unstable and ultimately the grounding line should retreat above sea level. While the ice tongue still exists, the flow of ice into it should not be speeded up and the grounding line should also not retreat, assuming that only conditions in the ocean change. However, laterally confined ice shelves experience significant buttressing. If removed, this leads to a rapid speed-up of the sheet and a new equilibrium grounding line thickness. We believe that something like this occurred in the Larsen B ice shelf.Publisher PDFPeer reviewe

    Regionalvermarktung und Bio-Produkte: SpannungsverhÀltnis oder sinnvolle ErgÀnzung?

    Get PDF
    Several studies on organic and region-of-origin labelled products assume that combining both characteristics enhances the success of the products on food markets. This paper presents results of two surveys which together give an insight into the compatibility of advertising the characteristics “organic” and “produced in the region of consumption” (regional products) for the case of Germany. Based on indepth interviews, the surveys reveal that the combination of both characteristics can complement each other but can also lead to unfavourable effects for both, organic and regional products. Hence, if market segments for organic and regional products are too small to serve them separately, the contrariness of the characteristics should be taken into account for developing adequate communication strategies

    A complementary relation between classical bits and randomness in local part in simulating singlet state

    Full text link
    Recently Leggett's proposal of non-local model generates new interest in simulating the statistics of singlet state. Singlet state statistics can be simulated by 1 bit of classical communication without using any further nonlocal correlation. But, interestingly, singlet state statistics can also be simulated with no classical cost if a non-local box is used. In the first case, the output is completely unbiased whereas in second case outputs are completely random. We suggest a new (possibly) signaling correlation resource which successfully simulates singlet statistics and this result suggests a new complementary relation between required classical bits and randomness in local output when the classical communication is limited by 1 cbit. This result reproduces the above two models of simulation as extreme cases. This also explains why Leggett's non-local model and the model presented by Branciard et.al. should fail to reproduce the statistics of a singlet.Comment: v3: Typos corrected, few changed notations, some extensions to earlier write-u

    Transport and bistable kinetics of a Brownian particle in a nonequilibrium environment

    Full text link
    A system reservoir model, where the associated reservoir is modulated by an external colored random force, is proposed to study the transport of an overdamped Brownian particle in a periodic potential. We then derive the analytical expression for the average velocity, mobility, and diffusion rate. The bistable kinetics and escape rate from a metastable state in the overdamped region are studied consequently. By numerical simulation we then demonstrate that our analytical escape rate is in good agreement with that of numerical result.Comment: 10 pages, 2 figures, RevTex4, minor correction

    Degree of Complementarity Determines the Nonlocality in Quantum Mechanics

    Full text link
    Complementarity principle is one of the central concepts in quantum mechanics which restricts joint measurement for certain observables. Of course, later development shows that joint measurement could be possible for such observables with the introduction of a certain degree of unsharpness or fuzziness in the measurement. In this paper, we show that the optimal degree of unsharpness, which guarantees the joint measurement of all possible pairs of dichotomic observables, determines the degree of nonlocality in quantum mechanics as well as in more general no-signaling theories.Comment: Close to published versio
    • 

    corecore