331 research outputs found

    Ranking State Fiscal Structures using Theory and Evidence

    Get PDF
    taxes growth infrastructure state rankings

    Untangling the Recombination Line Emission from HII Regions with Multiple Velocity Components

    Get PDF
    HII regions are the ionized spheres surrounding high-mass stars. They are ideal targets for tracing Galactic structure because they are predominantly found in spiral arms and have high luminosities at infrared and radio wavelengths. In the Green Bank Telescope HII Region Discovery Survey (GBT HRDS) we found that >30% of first Galactic quadrant HII regions have multiple hydrogen radio recombination line (RRL) velocities, which makes determining their Galactic locations and physical properties impossible. Here we make additional GBT RRL observations to determine the discrete HII region velocity for all 117 multiple-velocity sources within 18deg. < l < 65deg. The multiple-velocity sources are concentrated in the zone 22deg. < l < 32deg., coinciding with the largest regions of massive star formation, which implies that the diffuse emission is caused by leaked ionizing photons. We combine our observations with analyses of the electron temperature, molecular gas, and carbon recombination lines to determine the source velocities for 103 discrete H II regions (88% of the sample). With the source velocities known, we resolve the kinematic distance ambiguity for 47 regions, and thus determine their heliocentric distances.Comment: 44 pages, 5 figures, 16 pages of tables; Accepted by ApJ

    Untangling The Recombination Line Emission From H Ii Regions With Multiple Velocity Components

    Get PDF
    H ii regions are the ionized spheres surrounding high-mass stars. They are ideal targets for tracing Galactic structure because they are predominantly found in spiral arms and have high luminosities at infrared and radio wavelengths. In the Green Bank Telescope H ii Region Discovery Survey (GBT HRDS), we found that of first Galactic quadrant H ii regions have multiple hydrogen radio recombination line (RRL) velocities, which makes determining their Galactic locations and physical properties impossible. Here we make additional GBT RRL observations to determine the discrete H ii region velocity for all 117 multiple-velocity sources within . The multiple-velocity sources are concentrated in the zone , coinciding with the largest regions of massive star formation, which implies that the diffuse emission is caused by leaked ionizing photons. We combine our observations with analyses of the electron temperature, molecular gas, and carbon recombination lines to determine the source velocities for 103 discrete H ii regions ( of the sample). With the source velocities known, we resolve the kinematic distance ambiguity for 47 regions, and thus determine their heliocentric distances

    Physical State of Molecular Gas in High Galactic Latitude Translucent Clouds

    Get PDF
    The rotational transitions of carbon monoxide (CO) are the primary means of investigating the density and velocity structure of the molecular interstellar medium. Here we study the lowest four rotational transitions of CO towards high-latitude translucent molecular clouds (HLCs). We report new observations of the J = (4-3), (2-1), and (1-0) transitions of CO towards eight high-latitude clouds. The new observations are combined with data from the literature to show that the emission from all observed CO transitions is linearly correlated. This implies that the excitation conditions which lead to emission in these transitions are uniform throughout the clouds. Observed 13CO/12CO (1-0) integrated intensity ratios are generally much greater than the expected abundance ratio of the two species, indicating that the regions which emit 12CO (1-0) radiation are optically thick. We develop a statistical method to compare the observed line ratios with models of CO excitation and radiative transfer. This enables us to determine the most likely portion of the physical parameter space which is compatible with the observations. The model enables us to rule out CO gas temperatures greater than 30K since the most likely high-temperature configurations are 1 pc-sized structures aligned along the line of sight. The most probable solution is a high density and low temperature (HDLT) solution. The CO cell size is approximately 0.01 pc (2000 AU). These cells are thus tiny fragments within the 100 times larger CO-emitting extent of a typical high-latitude cloud. We discuss the physical implications of HDLT cells, and we suggest ways to test for their existence.Comment: 19 pages, 13 figures, 2 tables, emulateapj To be published in The Astrophysical Journa

    Magnetic Field Strengths in Photodissociation Regions

    Get PDF
    We measure carbon radio recombination line (RRL) emission at 5.3 GHz toward four H ii regions with the Green Bank Telescope to determine the magnetic field strength in the photodissociation region (PDR) that surrounds the ionized gas. Roshi suggests that the non-thermal line widths of carbon RRLs from PDRs are predominantly due to magneto-hydrodynamic waves, thus allowing the magnetic field strength to be derived. We model the PDR with a simple geometry and perform the non-LTE radiative transfer of the carbon RRL emission to solve for the PDR physical properties. Using the PDR mass density from these models and the carbon RRL non-thermal line width we estimate total magnetic field strengths of B ~ 100-300 µG in W3 and NGC 6334A. Our results for W49 and NGC 6334D are less well constrained with total magnetic field strengths between B ~ 200-1000 µG. H i and OH Zeeman measurements of the line of sight magnetic field strength (B_(los)), taken from the literature, are between a factor of ~ 0.5-1 of the lower bound of our carbon RRL magnetic field strength estimates. Since |B_(los)| ⩽ B, our results are consistent with the magnetic origin of the non-thermal component of carbon RRL widths

    GLIMPSE: I. A SIRTF Legacy Project to Map the Inner Galaxy

    Full text link
    GLIMPSE (Galactic Legacy Infrared Mid-Plane Survey Extraordinaire), a SIRTF Legacy Science Program, will be a fully sampled, confusion-limited infrared survey of the inner two-thirds of the Galactic disk with a pixel resolution of \~1.2" using the Infrared Array Camera (IRAC) at 3.6, 4.5, 5.8, and 8.0 microns. The survey will cover Galactic latitudes |b| <1 degree and longitudes |l|=10 to 65 degrees (both sides of the Galactic center). The survey area contains the outer ends of the Galactic bar, the Galactic molecular ring, and the inner spiral arms. The GLIMPSE team will process these data to produce a point source catalog, a point source data archive, and a set of mosaicked images. We summarize our observing strategy, give details of our data products, and summarize some of the principal science questions that will be addressed using GLIMPSE data. Up-to-date documentation, survey progress, and information on complementary datasets are available on the GLIMPSE web site: www.astro.wisc.edu/glimpse.Comment: Description of GLIMPSE, a SIRTF Legacy project (Aug 2003 PASP, in press). Paper with full res.color figures at http://www.astro.wisc.edu/glimpse/glimpsepubs.htm

    Sensitive Observations of Radio Recombination Lines in Orion and W51: The Data and Detection of Systematic Recombination Line Blueshifts Proportional to Impact Broadening

    Full text link
    Sensitive spectral observations made in two frequency bands near 6.0 and 17.6 GHz are described for Orion and W51. Using frequency switching we were able to achieve a dynamic range in excess of 10,000 without fitting sinusoidal or polynomial baselines. This enabled us to detect lines as weak as TA 1mKinthesestrongcontinuumsources.Hydrogenrecombinationlineswith_{A} ~1mK in these strong continuum sources. Hydrogen recombination lines with \Delta n$ as high as 25 have been detected in Orion. In the Orion data, where the lines are stronger, we have also detected a systematic shift in the line center frequencies proportional to linewidth that cannot be explained by normal optical depth effects.Comment: 22 pages, 13 figures. Accepted for publication in Astrophysics and Space Scienc
    corecore