120 research outputs found

    Online Interactive Teaching Modules Enhance Quantitative Proficiency of Introductory Biology Students

    Get PDF
    There is widespread agreement within the scientific and education communities that undergraduate biology curricula fall short in providing students with the quantitative and interdisciplinary problem-solving skills they need to obtain a deep understanding of biological phenomena and be prepared fully to contribute to future scientific inquiry. MathBench Biology Modules were designed to address these needs through a series of interactive, Web-based modules that can be used to supplement existing course content across the biological sciences curriculum. The effect of the modules was assessed in an introductory biology course at the University of Maryland. Over the course of the semester, students showed significant increases in quantitative skills that were independent of previous math course work. Students also showed increased comfort with solving quantitative problems, whether or not they ultimately arrived at the correct answer. A survey of spring 2009 graduates indicated that those who had experienced MathBench in their course work had a greater appreciation for the role of mathematics in modern biology than those who had not used MathBench. MathBench modules allow students from diverse educational backgrounds to hone their quantitative skills, preparing them for more complex mathematical approaches in upper-division courses

    The learning styles neuromyth:when the same term means different things to different teachers

    Get PDF
    Alexia Barrable - ORCID: 0000-0002-5352-8330 https://orcid.org/0000-0002-5352-8330Although learning styles (LS) have been recognised as a neuromyth, they remain a virtual truism within education. A point of concern is that the term LS has been used within theories that describe them using completely different notions and categorisations. This is the first empirical study to investigate education professionals’ conceptualisation, as well as means of identifying and implementing LS in their classroom. A sample of 123 education professionals were administered a questionnaire consisting both closed- and open-ended questions. Responses were analysed using thematic analysis. LS were found to be mainly conceptualised within the Visual-Auditory-(Reading)-Kinaesthetic (VAK/VARK) framework, as well as Gardner’s multiple intelligences. Moreover, a lot of education professionals confused theories of learning (e.g., behavioural or cognitive theories) with LS. In terms of identifying LS, educators reported using a variety of methods, spanning from observation and everyday contact to the use of tests. The ways LS were implemented in the classroom were numerous, comprising various teaching aids, participatory techniques and motor activities. Overall, we argue that the extended use of the term LS gives the illusion of a consensus amongst educators, when a closer examination reveals that the term LS is conceptualised, identified and implemented idiosyncratically by different individuals. This study aims to be of use to pre-service and in-service teacher educators in their effort to debunk the neuromyth of LS and replace it with evidence-based practices.https://doi.org/10.1007/s10212-020-00485-236pubpub

    Effects of psychological and psychosocial interventions on sport performance:a meta-analysis

    Get PDF
    Background: Psychologists are increasingly supporting the quest for performance enhancement in sport and there is a need to evaluate the evidence base underpinning their work. Objectives: To synthesize the most rigorous available research that has evaluated psychological, social, and psychosocial interventions with sport performers on variables relating to their athletic performance, and to address some of the perplexing issues in the sport psychology intervention literature (e.g., do interventions have a lasting effect on sport performance?). Methods: Randomized controlled trials were identified through electronic databases, hand-searching volumes of pertinent journals, scrutinizing reference lists of previous reviews, and contacting experts in the evaluation of interventions in this field. Included studies were required to evaluate the effects of psychological, social, or psychosocial interventions on sport performance in athletes when compared to a no-treatment or placebo-controlled treatment comparison group. A random effects meta-analysis calculating the standardized mean difference (Hedges’ g), meta-regressions, and trim and fill analyses were conducted. Data were analyzed at post-test and follow-up (ranging from 1 to 4 weeks after the intervention finished) assessments. Results: Psychological and psychosocial interventions were shown to enhance sport performance at post-test (k = 35, n = 997, Hedges’ g = 0.57, 95 % CI = 0.22–0.92) and follow-up assessments (k = 8, n = 189, Hedges’ g = 1.16, 95 % CI = 0.25–2.08); no social interventions were included or evaluated. Larger effects were found for psychosocial interventions and there was some evidence that effects were greatest in coach-delivered interventions and in samples with a greater proportion of male participants. Conclusions: Psychological and psychosocial interventions have a moderate positive effect on sport performance, and this effect may last at least a month following the end of the intervention. Future research would benefit from following guidelines for intervention reporting

    Interactive video

    No full text
    • 

    corecore