24 research outputs found

    Probing Intra-Halo Light with Galaxy Stacking in CIBER Images

    Get PDF
    We study the stellar halos of 0.2 ≲ z ≲ 0.5 galaxies with stellar masses spanning M* ∼ 1010.5 to 1012M⊙ (approximately L* galaxies at this redshift) using imaging data from the Cosmic Infrared Background Experiment (CIBER). A previous CIBER fluctuation analysis suggested that intra-halo light (IHL) contributes a significant portion of the near-infrared extragalactic background light (EBL), the integrated emission from all sources throughout cosmic history. In this work, we carry out a stacking analysis with a sample of ∼30,000 Sloan Digital Sky Survey (SDSS) photometric galaxies from CIBER images in two near-infrared bands (1.1 and 1.8 μm) to directly probe the IHL associated with these galaxies. We stack galaxies in five sub-samples split by brightness and detect an extended galaxy profile beyond the instrument point-spread function (PSF) derived by stacking stars. We jointly fit a model for the inherent galaxy light profile plus large-scale one- and two-halo clustering to measure the extended galaxy IHL. We detect nonlinear one-halo clustering in the 1.8 μm band at a level consistent with numerical simulations. By extrapolating the fraction of extended galaxy light we measure to all galaxy mass scales, we find ∼30%/15% of the total galaxy light budget from galaxies is at radius r > 10/20 kpc, respectively. These results are new at near-infrared wavelengths at the L* mass scale and suggest that the IHL emission and one-halo clustering could have appreciable contributions to the amplitude of large-scale EBL background fluctuations

    Pre-flight optical test and calibration for the Cosmic Infrared Background ExpeRiment 2 (CIBER-2)

    Get PDF
    The total integrated emission from galaxies, known as the Extragalactic Background Light (EBL), is an important observable for understanding the history of star formation over the history of the universe. Spatial fluctuations in the infrared EBL as measured by the Cosmic Infrared Background ExpeRiment (CIBER), Spitzer and AKARI exceed the predicted signal from galaxy clustering alone. The CIBER-2 project seeks to extend CIBER observa- tions of the EBL throughout the near infrared into the optical, through measurements above Earth's atmosphere during a suborbital sounding rocket flight. The experiment has a LN2-cooled 28.5 cm Cassegrain telescope along with three optical paths and dichroic beamsplitters, which are used to obtain three wide-field images in six broad spectral bands between 0.5-2.0 μm. The three focal planes also contain linear variable filters (LVFs) which simultaneously take spectra with resolution R=20 across the same range. CIBER-2 is scheduled to y multiple times on a Black Brant IX sounding rocket from White Sands Missile Range in the New Mexico desert. For the first flight, scheduled for early 2021, we have completed a variety of pre-flight optical tests, which we use to make focus adjustments, spectral response measurements, and absolute photometric calibrations. In this paper, we describe the methods behind these tests and present their results for pre-flight performance evaluation. In particular, we present measurements of the PSF for each broad spectral band, along with absolute calibration factors for each band and the LVF. Through monochromator scans, we also measure the spectral responsivity of each LVF as a function of position

    A VERITAS/Breakthrough Listen Search for Optical Technosignatures

    Full text link
    The Breakthrough Listen Initiative is conducting a program using multiple telescopes around the world to search for "technosignatures": artificial transmitters of extraterrestrial origin from beyond our solar system. The VERITAS Collaboration joined this program in 2018, and provides the capability to search for one particular technosignature: optical pulses of a few nanoseconds duration detectable over interstellar distances. We report here on the analysis and results of dedicated VERITAS observations of Breakthrough Listen targets conducted in 2019 and 2020 and of archival VERITAS data collected since 2012. Thirty hours of dedicated observations of 136 targets and 249 archival observations of 140 targets were analyzed and did not reveal any signals consistent with a technosignature. The results are used to place limits on the fraction of stars hosting transmitting civilizations. We also discuss the minimum-pulse sensitivity of our observations and present VERITAS observations of CALIOP: a space-based pulsed laser onboard the CALIPSO satellite. The detection of these pulses with VERITAS, using the analysis techniques developed for our technosignature search, allows a test of our analysis efficiency and serves as an important proof-of-principle.Comment: 15 pages, 7 figure

    VERITAS discovery of very high energy gamma-ray emission from S3 1227+25 and multiwavelength observations

    Full text link
    We report the detection of very high energy gamma-ray emission from the blazar S3 1227+25 (VER J1230+253) with the Very Energetic Radiation Imaging Telescope Array System (VERITAS). VERITAS observations of the source were triggered by the detection of a hard-spectrum GeV flare on May 15, 2015 with the Fermi-Large Area Telescope (LAT). A combined five-hour VERITAS exposure on May 16th and May 18th resulted in a strong 13σ\sigma detection with a differential photon spectral index, Γ\Gamma = 3.8 ±\pm 0.4, and a flux level at 9% of the Crab Nebula above 120 GeV. This also triggered target of opportunity observations with Swift, optical photometry, polarimetry and radio measurements, also presented in this work, in addition to the VERITAS and Fermi-LAT data. A temporal analysis of the gamma-ray flux during this period finds evidence of a shortest variability timescale of τobs\tau_{obs} = 6.2 ±\pm 0.9 hours, indicating emission from compact regions within the jet, and the combined gamma-ray spectrum shows no strong evidence of a spectral cut-off. An investigation into correlations between the multiwavelength observations found evidence of optical and gamma-ray correlations, suggesting a single-zone model of emission. Finally, the multiwavelength spectral energy distribution is well described by a simple one-zone leptonic synchrotron self-Compton radiation model.Comment: 18 pages, 6 figures. Accepted for publication in the Astrophysical Journal (ApJ

    33RD INTERNATIONAL COSMIC RAY CONFERENCE, RIO DE JANEIRO 2013 THE ASTROPARTICLE PHYSICS CONFERENCE Towards SiPM camera for current and future generations of Cherenkov tele- scopes

    No full text
    Abstract: So far the current ground-based Imaging Atmospheric Cherenkov Telescopes (IACTs) have energy thresholds in the best case in the range of 30 to 50 GeV (H.E.S.S. II and MAGIC telescopes). Lowest energy gamma-ray showers produce low light intensity images and cannot be efficiently separated from dominating images from hadronic background. A cost effective way of improving the telescope performance at lower energies is to use novel photosensors with superior photon detection efficiency (PDE). Currently the best commercially available superbialkali photomultipliers (PMTs) have a PDE of about 30-33%, whereas the silicon photomultipliers (SiPMs, also known as MPPC, GAPD) from some manufacturers show a photon detection efficiency of about 40-45%. Using these devices can lower the energy threshold of the instrument and may improve the background rejection due to intrinsic properties of SiPMs such as a superb single photoelectron resolution. Compared to PMTs, SiPMs are more compact, fast in response, operate at low voltage, and are insensitive to magnetic fields. SiPMs can be operated at high background illumination, which would allow to operate the IACT also during partial moonlight, dusk and dawn, hence increasing the instrument duty cycle. We are testing the SiPMs for Cherenkov telescopes such as MAGIC and CTA. Here we present an overview of our setup and first measurements, which we perform in two independent laboratories, in Munich, Germany and in Barcelona, Spain

    The Blazar TXS 0506+056 Associated with a High-energy Neutrino: Insights into Extragalactic Jets and Cosmic-Ray Acceleration

    No full text
    A neutrino with energy ~290 TeV, IceCube-170922A, was detected in coincidence with the BL Lac object TXS 0506+056 during enhanced gamma-ray activity, with chance coincidence being rejected at ~3σ level. We monitored the object in the very-high-energy (VHE) band with the Major Atmospheric Gamma-ray Imaging Cherenkov (MAGIC) telescopes for ~41 hr from 1.3 to 40.4 days after the neutrino detection. Day-timescale variability is clearly resolved. We interpret the quasi-simultaneous neutrino and broadband electromagnetic observations with a novel one-zone lepto-hadronic model, based on interactions of electrons and protons co-accelerated in the jet with external photons originating from a slow-moving plasma sheath surrounding the faster jet spine. We can reproduce the multiwavelength spectra of TXS 0506+056 with neutrino rate and energy compatible with IceCube-170922A, and with plausible values for the jet power of ~1045 - 4 x 1046 erg s-1. The steep spectrum observed by MAGIC is concordant with internal γγ absorption above ~100 GeV entailed by photohadronic production of a ~290 TeV neutrino, corroborating a genuine connection between the multi-messenger signals. In contrast to previous predictions of predominantly hadronic emission from neutrino sources, the gamma-rays can be mostly ascribed to inverse Compton upscattering of external photons by accelerated electrons. The X-ray and VHE bands provide crucial constraints on the emission from both accelerated electrons and protons. We infer that the maximum energy of protons in the jet comoving frame can be in the range ~1014 – 1018 eV.ISSN:1967-2014ISSN:2041-821
    corecore