15 research outputs found

    Comparative lipidomics of 5-Fluorouracil-sensitive and -resistant colorectal cancer cells reveals altered sphingomyelin and ceramide controlled by acid sphingomyelinase (SMPD1).

    Get PDF
    5-Fluorouracil (5-FU) is a chemotherapeutic drug widely used to treat colorectal cancer. 5-FU is known to gradually lose its efficacy in treating colorectal cancer following the acquisition of resistance. We investigated the mechanism of 5-FU resistance using comprehensive lipidomic approaches. We performed lipidomic analysis on 5-FU-resistant (DLD-1/5-FU) and -sensitive (DLD-1) colorectal cancer cells using MALDI-MS and LC-MRM-MS. In particular, sphingomyelin (SM) species were significantly up-regulated in 5-FU-resistant cells in MALDI-TOF analysis. Further, we quantified sphingolipids including SM and Ceramide (Cer) using Multiple Reaction Monitoring (MRM), as they play a vital role in drug resistance. We found that 5-FU resistance in DLD-1/5-FU colorectal cancer cells was mainly associated with SM increase and Cer decrease, which are controlled by acid sphingomyelinase (SMPD1). In addition, reduction of SMPD1 expression was confirmed by LC-MRM-MS analysis and the effect of SMPD1 in drug resistance was assessed by treating DLD-1 cells with siRNA-SMPD1. Furthermore, clinical colorectal cancer data set analysis showed that down-regulation of SMPD1 was associated with resistance to chemotherapy regimens that include 5-FU. Thus, from our study, we propose that SM/Cer and SMPD1 are new potential target molecules for therapeutic strategies to overcome 5-FU resistance

    Selective separation, detection of zotepine and mass spectral characterization of degradants by LCâMS/MS/QTOF

    Get PDF
    A simple, precise, accurate stability-indicating gradient reversed-phase high-performance liquid chromatographic (RPâHPLC) method was developed for the quantitative determination of zotepine (ZTP) in bulk and pharmaceutical dosage forms in the presence of its degradation products (DPs). The method was developed using Phenomenex C18 column (250 mmÃ4.6 mm i.d., 5 µm) with a mobile phase containing a gradient mixture of solvents, A (0.05% trifluoroacetic acid (TFA), pH=3.0) and B (acetonitrile). The eluted compounds were monitored at 254 nm; the run time was within 20.0 min, in which ZTP and its DPs were well separated, with a resolution of >1.5. The stress testing of ZTP was carried out under acidic, alkaline, neutral hydrolysis, oxidative, photolytic and thermal stress conditions. ZTP was found to degrade significantly in acidic, photolytic, thermal and oxidative stress conditions and remain stable in basic and neutral conditions. The developed method was validated with respect to specificity, linearity, limit of detection, limit of quantification, accuracy, precision and robustness as per ICH guidelines. This method was also suitable for the assay determination of ZTP in pharmaceutical dosage forms. The DPs were characterized by LCâMS/MS and their fragmentation pathways were proposed. Keywords: Zotepine, Stability-indicating RPâHPLC method, Characterization, ESI-Q-TOF-MS, Bulk drugs and formulation

    Liquid Chromatography Electrospray Ionization Tandem Mass Spectrometric (LC/ESI-MS/MS) Study for the Identification and Characterization of In Vivo Metabolites of Cisplatin in Rat Kidney Cancer Tissues: Online Hydrogen/Deuterium (H/D) Exchange Study.

    No full text
    In vivo rat kidney tissue metabolites of an anticancer drug, cisplatin (cis-diamminedichloroplatinum [II]) (CP) which is used for the treatment of testicular, ovarian, bladder, cervical, esophageal, small cell lung, head and neck cancers, have been identified and characterized by using liquid chromatography positive ion electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS) in combination with on line hydrogen/deuterium exchange (HDX) experiments. To identify in vivo metabolites, kidney tissues were collected after intravenous administration of CP to adult male Sprague-Dawley rats (n = 3 per group). The tissue samples were homogenized and extracted using newly optimized metabolite extraction procedure which involves liquid extraction with phosphate buffer containing ethyl acetate and protein precipitation with mixed solvents of methanol-water-chloroform followed by solid-phase clean-up procedure on Oasis HLB 3cc cartridges and then subjected to LC/ESI-HRMS analysis. A total of thirty one unknown in vivo metabolites have been identified and the structures of metabolites were elucidated using LC-MS/MS experiments combined with accurate mass measurements. Online HDX experiments have been used to further support the structural characterization of metabolites. The results showed that CP undergoes a series of ligand exchange biotransformation reactions with water and other nucleophiles like thio groups of methionine, cysteine, acetylcysteine, glutathione and thioether. This is the first research approach focused on the structure elucidation of biotransformation products of CP in rats, and the identification of metabolites provides essential information for further pharmacological and clinical studies of CP, and may also be useful to develop various effective new anticancer agents
    corecore