403 research outputs found

    Interaction between concentric Tubes in DWCNTs

    Full text link
    A detailed investigation of the Raman response of the inner tube radial breathing modes (RBMs) in double-wall carbon nanotubes is reported. It revealed that the number of observed RBMs is two to three times larger than the number of possible tubes in the studied frequency range. This unexpected increase in Raman lines is attributed to a splitting of the inner tube response. It is shown to originate from the possibility that one type of inner tube may form in different types of outer tubes and the fact that the inner tube RBM frequency depends on the diameter of the enclosing tube. Finally, a comparison of the inner tube RBMs and the RBMs of tubes in bundles gave clear evidence that the interaction in a bundle is stronger than the interaction between inner and outer tubes.Comment: 6 pages, 7 figures, submitted to Eur. Phys. J.

    EVALUATION OF EXHAUST GAS FROM BIO-DIESEL FUEL ENGINE

    Full text link
    Joint Research on Environmental Science and Technology for the Eart

    Low temperature fullerene encapsulation in single wall carbon nanotubes: synthesis of N@C60_{60}@SWCNT

    Full text link
    High filling of single wall carbon nanotubes (SWCNT) with C60_{60} and C70_{70} fullerenes in solvent is reported at temperatures as low as 69 o^{o}C. A 2 hour long refluxing in n-hexane of the mixture of the fullerene and SWCNT results in a high yield of C60_{60},C70_{70}@SWCNT, fullerene peapod, material. The peapod filling is characterized by TEM, Raman and electron energy loss spectroscopy and X-ray scattering. We applied the method to synthesize the temperature sensitive (N@C60_{60}:C60_{60})@SWCNT as proved by electron spin resonance spectroscopy. The solvent prepared peapod samples can be transformed to double walled nanotubes enabling a high yield and industrially scalable production of DWCNT

    SONOLYTICAL PRODUCTION OF BIO-DIESEL FUEL FROM NON-EDIBLE VEGETABLE OIL

    Full text link
    Joint Research on Environmental Science and Technology for the Eart

    Low frequency Raman studies of multi-wall carbon nanotubes: experiments and theory

    Full text link
    In this paper, we investigate the low frequency Raman spectra of multi-wall carbon nanotubes (MWNT) prepared by the electric arc method. Low frequency Raman modes are unambiguously identified on purified samples thanks to the small internal diameter of the MWNT. We propose a model to describe these modes. They originate from the radial breathing vibrations of the individual walls coupled through the Van der Waals interaction between adjacent concentric walls. The intensity of the modes is described in the framework of bond polarization theory. Using this model and the structural characteristics of the nanotubes obtained from transmission electron microscopy allows to simulate the experimental low frequency Raman spectra with an excellent agreement. It suggests that Raman spectroscopy can be as useful regarding the characterization of MWNT as it is in the case of single-wall nanotubes.Comment: 4 pages, 2 eps fig., 2 jpeg fig., RevTex, submitted to Phys. Rev.

    Water formation at low temperatures by surface O2 hydrogenation II: the reaction network

    Full text link
    Water is abundantly present in the Universe. It is the main component of interstellar ice mantles and a key ingredient for life. Water in space is mainly formed through surface reactions. Three formation routes have been proposed in the past: hydrogenation of surface O, O2, and O3. In a previous paper [Ioppolo et al., Astrophys. J., 2008, 686, 1474] we discussed an unexpected non-standard zeroth-order H2O2 production behaviour in O2 hydrogenation experiments, which suggests that the proposed reaction network is not complete, and that the reaction channels are probably more interconnected than previously thought. In this paper we aim to derive the full reaction scheme for O2 surface hydrogenation and to constrain the rates of the individual reactions. This is achieved through simultaneous H-atom and O2 deposition under ultra-high vacuum conditions for astronomically relevant temperatures. Different H/O2 ratios are used to trace different stages in the hydrogenation network. The chemical changes in the forming ice are followed by means of reflection absorption infrared spectroscopy (RAIRS). New reaction paths are revealed as compared to previous experiments. Several reaction steps prove to be much more efficient (H + O2) or less efficient (H + OH and H2 + OH) than originally thought. These are the main conclusions of this work and the extended network concluded here will have profound implications for models that describe the formation of water in space.Comment: 1 page, 1 figur

    The fate of plasma-generated oxygen atoms in aqueous solutions: non-equilibrium atmospheric pressure plasmas as an efficient source of atomic O(aq)

    Get PDF
    Non-equilibrium radio-frequency driven atmospheric-pressure plasma in He/0.6%O2 gas mixture has been used to study the reaction mechanism of plasma-generated oxygen atoms in aqueous solutions. The effluent from the plasma source operated with standard and 18O-labeled O2 gas was used to treat water in the presence of phenol as a chemical probe. Comparing the mass spectrometry and gas chromatography-mass spectrometry data of the solutions treated with plasma under normal and labeled oxygen provides clear evidence that O(aq) originating from the gas phase enters the liquid and reacts directly with phenol, without any intermediate reactions. Additionally, the atmospheric-pressure plasma source demonstrates great potential to be an effective source of O(aq) atoms without the requirement for any precursors in the liquid phase

    Electronic and Magnetic Properties of Nanographite Ribbons

    Full text link
    Electronic and magnetic properties of ribbon-shaped nanographite systems with zigzag and armchair edges in a magnetic field are investigated by using a tight binding model. One of the most remarkable features of these systems is the appearance of edge states, strongly localized near zigzag edges. The edge state in magnetic field, generating a rational fraction of the magnetic flux (\phi= p/q) in each hexagonal plaquette of the graphite plane, behaves like a zero-field edge state with q internal degrees of freedom. The orbital diamagnetic susceptibility strongly depends on the edge shapes. The reason is found in the analysis of the ring currents, which are very sensitive to the lattice topology near the edge. Moreover, the orbital diamagnetic susceptibility is scaled as a function of the temperature, Fermi energy and ribbon width. Because the edge states lead to a sharp peak in the density of states at the Fermi level, the graphite ribbons with zigzag edges show Curie-like temperature dependence of the Pauli paramagnetic susceptibility. Hence, it is shown that the crossover from high-temperature diamagnetic to low-temperature paramagnetic behavior of the magnetic susceptibility of nanographite ribbons with zigzag edges.Comment: 13 pages including 19 figures, submitted to Physical Rev

    Electronic states and quantum transport in double-wall carbon nanotubes

    Full text link
    Electronic states and transport properties of double-wall carbon nanotubes without impurities are studied in a systematic manner. It is revealed that scattering in the bulk is negligible and the number of channels determines the average conductance. In the case of general incommensurate tubes, separation of degenerated energy levels due to intertube transfer is suppressed in the energy region higher than the Fermi energy but not in the energy region lower than that. Accordingly, in the former case, there are few effects of intertube transfer on the conductance, while in the latter case, separation of degenerated energy levels leads to large reduction of the conductance. It is also found that in some cases antiresonance with edge states in inner tubes causes an anomalous conductance quantization, G=e2/πG=e^2/\pi\hbar, near the Fermi energy.Comment: 24 pages, 13 figures, to be published in Physical Review
    corecore