53 research outputs found

    The Massive and Distant Clusters of WISE Survey V: Extended Radio Sources in Massive Galaxy Clusters at z~1

    Full text link
    We present the results from a pilot study with the Karl G. Jansky Very Large Array (JVLA) to determine the radio morphologies of extended radio sources and the properties of their host-galaxies in 10 massive galaxy clusters at z~1, an epoch in which clusters are assembling rapidly. These clusters are drawn from a parent sample of WISE-selected galaxy clusters that were cross-correlated with the VLA Faint Images of the Radio Sky at Twenty-Centimeters survey (FIRST) to identify extended radio sources within 1′^{\prime} of the cluster centers. Out of the ten targeted sources, six are FR II sources, one is an FR I source, and three sources have undetermined morphologies. Eight radio sources have associated Spitzer data, 75% presenting infrared counterparts. A majority of these counterparts are consistent with being massive galaxies. The angular extent of the FR sources exhibits a strong correlation with the cluster-centric radius, which warrants further investigation with a larger sample.Comment: accepted to Ap

    The Massive and Distant Clusters of WISE Survey: SZ effect Verification with the Atacama Compact Array -- Localization and Cluster Analysis

    Full text link
    The Massive and Distant Clusters of WISE Survey (MaDCoWS) provides a catalog of high-redshift (0.7≲z≲1.50.7\lesssim z\lesssim 1.5) infrared-selected galaxy clusters. However, the verification of the ionized intracluster medium, indicative of a collapsed and nearly virialized system, is made challenging by the high redshifts of the sample members. The main goal of this work is to test the capabilities of the Atacama Compact Array (ACA; also known as the Morita Array) Band 3 observations, centered at about 97.5 GHz, to provide robust validation of cluster detections via the thermal Sunyaev-Zeldovich (SZ) effect. Using a pilot sample that comprises ten MaDCoWS galaxy clusters, accessible to ACA and representative of the median sample richness, we infer the masses of the selected galaxy clusters and respective detection significance by means of a Bayesian analysis of the interferometric data. Our test of the "Verification with the ACA - Localization and Cluster Analysis" (VACA LoCA) program demonstrates that the ACA can robustly confirm the presence of the virialized intracluster medium in galaxy clusters previously identified in full-sky surveys. In particular, we obtain a significant detection of the SZ effect for seven out of the ten VACA LoCA clusters. We note that this result is independent of the assumed pressure profile. However, the limited angular dynamic range of the ACA in Band 3 alone, short observational integration times, and possible contamination from unresolved sources limit the detailed characterization of the cluster properties and the inference of the cluster masses within scales appropriate for the robust calibration of mass-richness scaling relations.Comment: 19 pages (including appendices), 14 figures, and 4 tables; accepted for publication in A&

    The Massive and Distant Clusters of WISE Survey: MOO J1142+1527, a 10^(15) M_⊙ Galaxy Cluster at z = 1.19

    Get PDF
    We present confirmation of the cluster MOO J1142+1527, a massive galaxy cluster discovered as part of the Massive and Distant Clusters of WISE Survey. The cluster is confirmed to lie at z = 1.19, and using the Combined Array for Research in Millimeter-wave Astronomy we robustly detect the Sunyaev–Zel'dovich (SZ) decrement at 13.2σ. The SZ data imply a mass of M_(200m) = (1.1 ± 0.2) × 10^(15)M_⊙, making MOO J1142+1527 the most massive galaxy cluster known at z > 1.15 and the second most massive cluster known at z > 1. For a standard ΛCDM cosmology it is further expected to be one of the ~5 most massive clusters expected to exist at z ≥ 1.19 over the entire sky. Our ongoing Spitzer program targeting ~1750 additional candidate clusters will identify comparably rich galaxy clusters over the full extragalactic sky

    The Massive and Distant Clusters of WISE Survey VI: Stellar Mass Fractions of a Sample of High-Redshift Infrared-selected Clusters

    Get PDF
    We present measurements of the stellar mass fractions (f⋆f_\star) for a sample of high-redshift (0.93≤z≤1.320.93 \le z \le 1.32) infrared-selected galaxy clusters from the Massive and Distant Clusters of WISE Survey (MaDCoWS) and compare them to the stellar mass fractions of Sunyaev-Zel'dovich (SZ) effect-selected clusters in a similar mass and redshift range from the South Pole Telescope (SPT)-SZ Survey. We do not find a significant difference in mean f⋆f_\star between the two selection methods, though we do find an unexpectedly large range in f⋆f_\star for the SZ-selected clusters. In addition, we measure the luminosity function of the MaDCoWS clusters and find m∗=19.41±0.07m^*= 19.41\pm0.07, similar to other studies of clusters at or near our redshift range. Finally, we present SZ detections and masses for seven MaDCoWS clusters and new spectroscopic redshifts for five MaDCoWS clusters. One of these new clusters, MOO J1521+0452 at z=1.31z=1.31, is the most distant MaDCoWS cluster confirmed to date.Comment: Accepted to Ap
    • …
    corecore