7 research outputs found

    Maintaining clearance in peritoneal dialysis

    No full text
    Numerous studies have now established that there is a strong association between small solute clearance and improved outcomes in peritoneal dialysis (PD) patients. Preservation of both renal and peritoneal clearances is therefore of paramount importance, although very few trials have satisfactorily addressed this critical issue. Observational studies have suggested that the groups most at risk of loss of residual renal function are women, non-whites, diabetic patients, patients with congestive cardiac failure, patients who experience frequent episodes of peritonitis and, possibly, patients treated with automated PD (APD). There have been no controlled trials of renoprotective therapies in PD patients, but reasonable strategies for preventing renal functional decline include avoidance of nephrotoxins and infection, maintenance of adequate blood pressure, abstinence from smoking and possibly administration of angiotensin-converting enzyme inhibitors and/or calcium channel blockers. In contrast, peritoneal small solute removal can be maximized by augmenting fill volume, increasing exchange frequency and using either long-dwell continuous ambulatory PD (CAPD) or short-dwell (APD) therapies to suit individual patients' transport characteristics. Tidal PD may additionally increase solute clearance, although studies have reported conflicting findings. Preservation of membrane function may be achieved by minimizing episodes of peritonitis and avoiding hypertonic glucose exchanges. Newer peritoneal dialysates, such as icodextrin, amino acids, bicarbonate-buffered solutions and aldehyde-poor fluids, are more biocompatible in experimental models of PD, but their long-term clinical safety and efficacy have not yet been established by clinical trials. Moreover, no trials have demonstrated an independent effect of peritoneal clearance on patient outcomes. Further studies determining the relative value of renal and peritoneal clearances are therefore urgently required in order to optimize dialytic adequacy for PD patients

    Effects of different membranes and dialysis technologies on patient treatment tolerance and nutritional parameters

    No full text
    There is increasing evidence that the biochemical and cellular phenomena induced by blood/membrane/dialysate interactions contribute to dialysis-related intradialytic and long-term complications. However, there is a lack of large, prospective, randomized trials comparing biocompatible and bioincompatible membranes, and convective and diffusive treatment modalities. The primary aim of this prospective, randomized trial was to evaluate whether the use of polysulfone membrane with bicarbonate dialysate offers any advantages (in terms of treatment tolerance, nutritional parameters and pre-treatment beta(2)-microglobulin levels) over a traditional membrane (Cu-prophan(R)). A secondary aim was to assess whether the use of more sophisticated methods consisting of a biocompatible synthetic membrane with different hydraulic permeability at different ultrafiltration rate (high-flux hemodialysis and hemodiafiltration) offers any further advantages. Seventy-one Centers were involved and stratified according to the availability of only the first two or all four of the following techniques: Cuprophan(R) hemodialysis (Cu-HD), low flux polysulfone hemodialysis (LfPS-HD), high-flux polysulfone high-flux hemodialysis (HfPS-HD), and high-flux polysulfone hemodiafiltration (HfPS-HDF). The 380 eligible patients were randomized to one of the two or four treatments (132 to Cu-HD, 147 to LfPS-HD, 51 to HfPS-HD and 50 to HfPS-HDF). The follow-up was 24 months. No statistical difference was observed in the algebraic sum of the end points between bicarbonate dialysis with Cuprophan(R) or with low-flux polysulfone, or among the four dialysis methods under evaluation. There was a significant decrease in pre-dialysis plasma beta(2)-microglobulin levels in high-flux dialysis of 9.04+/-10.46 mg/liter (23%) and in hemodiafiltration of 6.35+/-12.28 mg/liter (16%), both using high-flux polysulfone membrane in comparison with Cuprophan(R) and low-flux polysulfone membranes (P=0.032). The significant decrease in pre-dialysis plasma beta(2)-microglobulin levels could have a clinical impact when one considers that beta(2)-microglobulin accumulation and amyloidosis are important long-term dialysis-related complications
    corecore