6 research outputs found

    Normative range of blood biochemical parameters in urban Indian school-going adolescents.

    Get PDF
    Adolescence is the most critical phase of human growth that radically alters physiology of the body and wherein any inconsistency can lead to serious health consequences in adulthood. The timing and pace at which various developmental events occur during adolescence is highly diverse and thus results in a drastic change in blood biochemistry. Monitoring the physiological levels of various biochemical measures in ample number of individuals during adolescence can call up for an early intervention in managing metabolic diseases in adulthood. Today, only a couple of studies in different populations have investigated blood biochemistry in a small number of adolescents however, there is no comprehensive biochemical data available worldwide. In view, we performed a cross-sectional study in a sizeable group of 7,618 Indian adolescents (3,333 boys and 4,285 girls) aged between 11-17 years to inspect the distribution of values of common biochemical parameters that generally prevails during adolescence and we observed that various parameters considerably follow the reported values from different populations being 3.56-6.49mmol/L (fasting glucose), 10.60-199.48pmol/L (insulin), 0.21-3.22nmol/L (C-peptide), 3.85-6.25% (HbA1c), 2.49-5.54mmol/L (total cholesterol), 1.16-3.69mmol/L (LDL), 0.78-1.85mmol/L (HDL), 0.33-2.24mmol/L (triglycerides), 3.56-11.45mmol/L (urea), 130.01-440.15Ī¼mol/L (uric acid) and 22.99-74.28Ī¼mol/L (creatinine). Barring LDL and triglycerides, all parameters differed significantly between boys and girls (p< 0.001). Highest difference was seen for uric acid (p = 1.3 x10-187) followed by C-peptide (p = 6.6 x10-89). Across all ages during adolescence, glycemic and nitrogen metabolites parameters varied markedly with gender. Amongst lipid parameters, only HDL levels were found to be significantly associated with gender following puberty (p< 0.001). All parameters except urea, differed considerably in obese and lean adolescents (p< 0.0001). The present study asserts that age, sex and BMI are the essential contributors to variability in blood biochemistry during adolescence. Our composite data on common blood biochemical measures will benefit future endeavors to define reference intervals in adolescents especially when the global availability is scarce

    Genome-wide association study for type 2 diabetes in Indians identifies a new susceptibility locus at 2q21.

    Get PDF
    Indians undergoing socioeconomic and lifestyle transitions will be maximally affected by epidemic of type 2 diabetes (T2D). We conducted a two-stage genome-wide association study of T2D in 12,535 Indians, a less explored but high-risk group. We identified a new type 2 diabetes-associated locus at 2q21, with the lead signal being rs6723108 (odds ratio 1.31; P = 3.32 Ɨ 10ā»ā¹). Imputation analysis refined the signal to rs998451 (odds ratio 1.56; P = 6.3 Ɨ 10ā»Ā¹Ā²) within TMEM163 that encodes a probable vesicular transporter in nerve terminals. TMEM163 variants also showed association with decreased fasting plasma insulin and homeostatic model assessment of insulin resistance, indicating a plausible effect through impaired insulin secretion. The 2q21 region also harbors RAB3GAP1 and ACMSD; those are involved in neurologic disorders. Forty-nine of 56 previously reported signals showed consistency in direction with similar effect sizes in Indians and previous studies, and 25 of them were also associated (P < 0.05). Known loci and the newly identified 2q21 locus altogether explained 7.65% variance in the risk of T2D in Indians. Our study suggests that common susceptibility variants for T2D are largely the same across populations, but also reveals a population-specific locus and provides further insights into genetic architecture and etiology of T2D

    Common variants in CLDN2 and MORC4 genes confer disease susceptibility in patients with chronic pancreatitis

    Get PDF
    A recent Genome-wide Association Study (GWAS) identified association with variants in X-linked CLDN2 and MORC4 and PRSS1-PRSS2 loci with Chronic Pancreatitis (CP) in North American patients of European ancestry. We selected 9 variants from the reported GWAS and replicated the association with CP in Indian patients by genotyping 1807 unrelated Indians of Indo-European ethnicity, including 519 patients with CP and 1288 controls. The etiology of CP was idiopathic in 83.62% and alcoholic in 16.38% of 519 patients. Our study confirmed a significant association of 2 variants in CLDN2 gene (rs4409525ā€”OR 1.71, P = 1.38 x 10-09; rs12008279ā€”OR 1.56, P = 1.53 x 10-04) and 2 variants in MORC4 gene (rs12688220ā€”OR 1.72, P = 9.20 x 10-09; rs6622126ā€”OR 1.75, P = 4.04x10-05) in Indian patients with CP. We also found significant association at PRSS1-PRSS2 locus (OR 0.60; P = 9.92 x 10-06) and SAMD12-TNFRSF11B (OR 0.49, 95% CI [0.31ā€“0.78], P = 0.0027). A variant in the gene MORC4 (rs12688220) showed significant interaction with alcohol (OR for homozygous and heterozygous risk allele -14.62 and 1.51 respectively, P = 0.0068) suggesting gene-environment interaction. A combined analysis of the genes CLDN2 and MORC4 based on an effective risk allele score revealed a higher percentage of individuals homozygous for the risk allele in CP cases with 5.09 fold enhanced risk in individuals with 7 or more effective risk alleles compared with individuals with 3 or less risk alleles (P = 1.88 x 10-14). Genetic variants in CLDN2 and MORC4 genes were associated with CP in Indian patients

    Genome-Wide Association Study of Metabolic Syndrome Reveals Primary Genetic Variants at CETP Locus in Indians

    No full text
    Indians, a rapidly growing population, constitute vast genetic heterogeneity to that of Western population; however they have become a sedentary population in past decades due to rapid urbanization ensuing in the amplified prevalence of metabolic syndrome (MetS). We performed a genome-wide association study (GWAS) of MetS in 10,093 Indian individuals (6617 MetS and 3476 controls) of Indo-European origin, that belong to our previous biorepository of The Indian Diabetes Consortium (INDICO). The study was conducted in two stagesā€”discovery phase (N = 2158) and replication phase (N = 7935). We discovered two variants within/near the CETP geneā€”rs1800775 and rs3816117ā€”associated with MetS at genome-wide significance level during replication phase in Indians. Additional CETP loci rs7205804, rs1532624, rs3764261, rs247617, and rs173539 also cropped up as modest signals in Indians. Haplotype association analysis revealed GCCCAGC as the strongest haplotype within the CETP locus constituting all seven CETP signals. In combined analysis, we perceived a novel and functionally relevant sub-GWAS significant locusā€”rs16890462 in the vicinity of SFRP1 gene. Overlaying gene regulatory data from ENCODE database revealed that single nucleotide polymorphism (SNP) rs16890462 resides in repressive chromatin in human subcutaneous adipose tissue as characterized by the enrichment of H3K27me3 and CTCF marks (repressive gene marks) and diminished H3K36me3 marks (activation gene marks). The variant displayed active DNA methylation marks in adipose tissue, suggesting its likely regulatory activity. Further, the variant also disrupts a potential binding site of a key transcription factor, NRF2, which is known for involvement in obesity and metabolic syndrome
    corecore