105 research outputs found

    System-Engineered Miniaturized Robots: From Structure to Intelligence

    Get PDF
    The development of small machines, once envisioned by Feynman decades ago, has stimulated significant research in materials science, robotics, and computer science. Over the past years, the field of miniaturized robotics has rapidly expanded with many research groups contributing to the numerous challenges inherent to this field. Smart materials have played a particularly important role as they have imparted miniaturized robots with new functionalities and distinct capabilities. However, despite all efforts and many available soft materials and innovative technologies, a fully autonomous system-engineered miniaturized robot (SEMR) of any practical relevance has not been developed yet. In this review, the foundation of SEMRs is discussed and six main areas (structure, motion, sensing, actuation, energy, and intelligence) which require particular efforts to push the frontiers of SEMRs further are identified. During the past decade, miniaturized robotic research has mainly relied on simplicity in design, and fabrication. A careful examination of current SEMRs that are physically, mechanically, and electrically engineered shows that they fall short in many ways concerning miniaturization, full-scale integration, and self-sufficiency. Some of these issues have been identified in this review. Some are inevitably yet to be explored, thus, allowing to set the stage for the next generation of intelligent, and autonomously operating SEMRs

    On-chip integrated process-programmable sub-10 nm thick molecular devices switching between photomultiplication and memristive behaviour

    Get PDF
    Molecular devices constructed by sub-10 nm thick molecular layers are promising candidates for a new generation of integratable nanoelectronic applications. Here, we report integrated molecular devices based on ultrathin copper phthalocyanine/fullerene hybrid layers with microtubular soft-contacts, which exhibit process-programmable functionality switching between photomultiplication and memristive behaviour. The local electric field at the interface between the polymer bottom electrode and the enclosed molecular channels modulates the ionic-electronic charge interaction and hence determines the transition of the device function. When ions are not driven into the molecular channels at a low interface electric field, photogenerated holes are trapped as electronic space charges, resulting in photomultiplication with a high external quantum efficiency. Once mobile ions are polarized and accumulated as ionic space charges in the molecular channels at a high interface electric field, the molecular devices show ferroelectric-like memristive switching with remarkable resistive ON/OFF and rectification ratios

    Charge transport in organic nanocrystal diodes based on rolled-up robust nanomembrane contacts

    Get PDF
    The investigation of charge transport in organic nanocrystals is essential to understand nanoscale physical properties of organic systems and the development of novel organic nanodevices. In this work, we fabricate organic nanocrystal diodes contacted by rolled-up robust nanomembranes. The organic nanocrystals consist of vanadyl phthalocyanine and copper hexadecafluorophthalocyanine heterojunctions. The temperature dependent charge transport through organic nanocrystals was investigated to reveal the transport properties of ohmic and space-charge-limited current under different conditions, for instance, temperature and bias

    A new dimension for magnetosensitive e-skins: active matrix integrated micro-origami sensor arrays

    Get PDF
    Magnetic sensors are widely used in our daily life for assessing the position and orientation of objects. Recently, the magnetic sensing modality has been introduced to electronic skins (e-skins), enabling remote perception of moving objects. However, the integration density of magnetic sensors is limited and the vector properties of the magnetic field cannot be fully explored since the sensors can only perceive field components in one or two dimensions. Here, we report an approach to fabricate high-density integrated active matrix magnetic sensor with three-dimensional (3D) magnetic vector field sensing capability. The 3D magnetic sensor is composed of an array of self-assembled micro-origami cubic architectures with biased anisotropic magnetoresistance (AMR) sensors manufactured in a wafer-scale process. Integrating the 3D magnetic sensors into an e-skin with embedded magnetic hairs enables real-time multidirectional tactile perception. We demonstrate a versatile approach for the fabrication of active matrix integrated 3D sensor arrays using micro-origami and pave the way for new electronic devices relying on the autonomous rearrangement of functional elements in space
    • 

    corecore