5 research outputs found

    2D/3D Visual Tracker for Rover Mast

    Get PDF
    A visual-tracker computer program controls an articulated mast on a Mars rover to keep a designated feature (a target) in view while the rover drives toward the target, avoiding obstacles. Several prior visual-tracker programs have been tested on rover platforms; most require very small and well-estimated motion between consecutive image frames a requirement that is not realistic for a rover on rough terrain. The present visual-tracker program is designed to handle large image motions that lead to significant changes in feature geometry and photometry between frames. When a point is selected in one of the images acquired from stereoscopic cameras on the mast, a stereo triangulation algorithm computes a three-dimensional (3D) location for the target. As the rover moves, its body-mounted cameras feed images to a visual-odometry algorithm, which tracks two-dimensional (2D) corner features and computes their old and new 3D locations. The algorithm rejects points, the 3D motions of which are inconsistent with a rigid-world constraint, and then computes the apparent change in the rover pose (i.e., translation and rotation). The mast pan and tilt angles needed to keep the target centered in the field-of-view of the cameras (thereby minimizing the area over which the 2D-tracking algorithm must operate) are computed from the estimated change in the rover pose, the 3D position of the target feature, and a model of kinematics of the mast. If the motion between the consecutive frames is still large (i.e., 3D tracking was unsuccessful), an adaptive view-based matching technique is applied to the new image. This technique uses correlation-based template matching, in which a feature template is scaled by the ratio between the depth in the original template and the depth of pixels in the new image. This is repeated over the entire search window and the best correlation results indicate the appropriate match. The program could be a core for building application programs for systems that require coordination of vision and robotic motion

    Visual target tracking for rover-based planetary exploration

    Get PDF
    Abstract-To command a rover to go to a location of scientific interest on a remote planet, the rover must be capable of reliably tracking the target designated by a scientist from about ten rover lengths away. The rover must maintain lock on the target while traversing rough terrain and avoiding obstacles without the need for communication with Earth. Among the challenges of tracking targets from a rover are the large changes in the appearance and shape of the selected target as the rover approaches it, the limited frame rate at which images can be acquired and processed, and the sudden changes in camera pointing as the rover goes over rocky terrain. We have investigated various techniques for combining 2D and 3D information in order to increase the reliability of visually tracking targets under Mars like conditions. We will present the approaches that we have examined on simulated data and tested onboard the Rocky 8 rover in the JPL Mars Yard and the K9 rover in the ARC Marscape. These techniques include results for 2D trackers, ICP, visual odometry, and 2D/3D trackers

    Visual echo analysis and multi-evidential correlation: non-linear matching & registration of signals and images

    No full text
    Many low-level vision tasks - such as measurement of visual motion, stereo disparity estimation, or texture segmentation - can be solved by similar computational or biological mechanisms. The primary aim of this dissertation is to introduce and describe a broadly applicable approach to address a variety of low level computational vision problems. This unified framework, which is named visual echo analysis, is based on the simple observation that many computer vision problems can be viewed as detection and estimation of echo arrival periods in time and space. To this end, the framework uses cepstral techniques, a common and effective non-linear signal processing methods for detecting the presence of echoes and estimating their spatial or temporal arrival period. The thesis introduces computational and performance improvements to the traditional power and differential cepstrum with direct extensions to complex and phase cepstrum. Visual echo analysis (and multi-dimensional cepstrum) is then applied to a number of low-level vision tasks such as: motion estimation, binocular and trinocular stereo disparity, motion-stereo analysis, multi-frame disparity estimation (multi-frame motion, multiple baseline stereo), stationary texture segmentation, boundary symmetry analysis, and detection and estimation of multiple disparities (i.e., motion transparency, reflection, and occluding boundary). The relationship between echo analysis and matching is briefly examined, and a new technique for signal registration - called multi-evidential correlation (MEC) is introduced. MEC provides multiple, and thus verifiable, measurements for individual point disparities. The technique utilizes specific matching kernels - such as cepstrum, phase correlation or Hadamard based disparity measurements methods - to furnish multiple estimates of individual disparities; estimates that can be used to verify one another and/or be combined to establish a robust and accurate measure of signal displacements.Science, Faculty ofComputer Science, Department ofGraduat

    Improving Simulated Annealing by Replacing Its Variables with Game-Theoretic Utility Maximizers

    No full text
    The game-theory field of Collective INtelligence (COIN) concerns the design of computer-based players engaged in a non-cooperative game so that as those players pursue their self-interests, a pre-specified global goal for the collective computational system is achieved as a side-effect. Previous implementations of COIN algorithms have outperformed conventional techniques by up to several orders of magnitude, on domains ranging from telecommunications control to optimization in congestion problems. Recent mathematical developments have revealed that these previously developed algorithms were based on only two of the three factors determining performance. Consideration of only the third factor would instead lead to conventional optimization techniques like simulated annealing that have little to do with non-cooperative games. In this paper we present an algorithm based on all three terms at once. This algorithm can be viewed as a way to modify simulated annealing by recasting it as a non-cooperative game, with each variable replaced by a player. This recasting allows us to leverage the intelligent behavior of the individual players to substantially improve the exploration step of the simulated annealing. Experiments are presented demonstrating that this recasting significantly improves simulated annealing for a model of an economic process run over an underlying small-worlds topology. Furthermore, these experiments reveal novel small-worlds phenomena, and highlight the shortcomings of conventional mechanism design in bounded rationality domains

    Improving Search Algorithms by Using Intelligent Coordinates

    No full text
    We consider algorithms that maximize a global function G in a distributed manner, using a different adaptive computational agent to set each variable of the underlying space. Each agent eta is self-interested; it sets its variable to maximize its own function g (sub eta). Three factors govern such a distributed algorithm's performance, related to exploration/exploitation, game theory, and machine learning. We demonstrate how to exploit alI three factors by modifying a search algorithm's exploration stage: rather than random exploration, each coordinate of the search space is now controlled by a separate machine-learning-based player engaged in a noncooperative game. Experiments demonstrate that this modification improves simulated annealing (SA) by up to an order of magnitude for bin packing and for a model of an economic process run over an underlying network. These experiments also reveal interesting small-world phenomena
    corecore