7 research outputs found

    PET study of intravitreal adalimumab pharmacokinetics in a uveitis rat model

    Get PDF
    X. García-Otero is grateful to the IDIS (Health Research Institute of Santiago de Compostela) for financing his predoctoral research fellowship. C. Mondelo-García, E. Bandín-Vilar and A. Fernández-Ferreiro are grateful to the Carlos III Health Institute for financing their personnel contracts: JR20/00026, CM20/00135 and JR18/00014.S

    Review of Pharmacokinetics and Pharmacogenetics in Atypical Long-Acting Injectable Antipsychotics

    Get PDF
    Over the last two decades, pharmacogenetics and pharmacokinetics have been increasingly used in clinical practice in Psychiatry due to the high variability regarding response and side effects of antipsychotic drugs. Specifically, long-acting injectable (LAI) antipsychotics have different pharmacokinetic profile than oral formulations due to their sustained release characteristics. In addition, most of these drugs are metabolized by CYP2D6, whose interindividual genetic variability results in different metabolizer status and, consequently, into different plasma concentrations of the drugs. In this context, there is consistent evidence which supports the use of therapeutic drug monitoring (TDM) along with pharmacogenetic tests to improve safety and efficacy of antipsychotic pharmacotherapy. This comprehensive review aims to compile all the available pharmacokinetic and pharmacogenetic data regarding the three major LAI atypical antipsychotics: risperidone, paliperidone and aripiprazole. On the one hand, CYP2D6 metabolizer status influences the pharmacokinetics of LAI aripiprazole, but this relation remains a matter of debate for LAI risperidone and LAI paliperidone. On the other hand, developed population pharmacokinetic (popPK) models showed the influence of body weight or administration site on the pharmacokinetics of these LAI antipsychotics. The combination of pharmacogenetics and pharmacokinetics (including popPK models) leads to a personalized antipsychotic therapy. In this sense, the optimization of these treatments improves the benefit–risk balance and, consequently, patients’ quality of lifeThis project was partially supported by Fundación Española de Farmacia Hospitalaria “Convocatoria de ayudas de proyectos para grupos de trabajo de la SEFH 2021-2022”, Plan Galego de Saude Mental (SERGAS) and Axencia Galega Innovación (Grupos de Potencial Crecimiento IN607B2020/11). Bandín-Vilar E.: Mondelo-García C. and Fernández-Ferreiro A. are grateful to the Carlos III Health Institute for financing their personnel contracts: CM20/00135, JR20/00026 and JR18/00014S

    Recent Advances in Proteomics-Based Approaches to Studying Age-Related Macular Degeneration: A Systematic Review

    No full text
    Age-related macular degeneration (AMD) is a common ocular disease characterized by degeneration of the central area of the retina in the elderly population. Progression and response to treatment are influenced by genetic and non-genetic factors. Proteomics is a powerful tool to study, at the molecular level, the mechanisms underlying the progression of the disease, to identify new therapeutic targets and to establish biomarkers to monitor progression and treatment effectiveness. In this work, we systematically review the use of proteomics-based approaches for the study of the molecular mechanisms underlying the development of AMD, as well as the progression of the disease and on-treatment patient monitoring. The Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) reporting guidelines were followed. Proteomic approaches have identified key players in the onset of the disease, such as complement components and proteins involved in lipid metabolism and oxidative stress, but also in the progression to advanced stages, including factors related to extracellular matrix integrity and angiogenesis. Although anti-vascular endothelial growth factor (anti-VEGF)-based therapy has been crucial in the treatment of neovascular AMD, it is necessary to deepen our understanding of the underlying disease mechanisms to move forward to next-generation therapies for later-stage forms of this multifactorial disease

    Current Situation and Challenges in Vitreous Substitutes

    Get PDF
    Vitreo-retinal disorders constitute a significant portion of treatable ocular diseases. These pathologies often require vitreo-retinal surgery and, as a consequence, the use of vitreous substitutes. Nowadays, the vitreous substitutes that are used in clinical practice are mainly divided into gases (air, SF6, C2F6, C3F8) and liquids (perfluorocarbon liquids, silicone oils, and heavy silicone oils). There are specific advantages and drawbacks to each of these, which determine their clinical indications. However, developing the ideal biomaterial for vitreous substitution continues to be one of the most important challenges in ophthalmology, and a multidisciplinary approach is required. In this sense, recent research has focused on the development of biocompatible, biodegradable, and injectable hydrogels (natural, synthetic, and smart), which also act as medium and long-term internal tamponade agents. This comprehensive review aims to cover the main characteristics and indications for use of the extensive range of vitreous substitutes that are currently used in clinical practice, before going on to describe the hydrogels that have been developed recently and which have emerged as promising biomaterials for vitreous substitutionC.M.-G., E.B.-V., L.G.-Q., and A.F.-F. are grateful to the Carlos III Health Institute for financing the CM18/00090, CM20/00135, CM20/00024, and JR18/00014 personnel contracts. This work was partially supported by the following projects of Carlos III Health Institute (PI17/00940 and PI20/00719)S

    Ampicillin Stability in a Portable Elastomeric Infusion Pump: A Step Forward in Outpatient Parenteral Antimicrobial Therapy

    No full text
    Outpatient parenteral antimicrobial therapy (OPAT) with continuous infusion pumps is postulated as a very promising solution to treat complicated infections, such as endocarditis or osteomyelitis, that require patients to stay in hospital during extended periods of time, thus reducing their quality of life and increasing the risk of complications. However, stability studies of drugs in elastomeric devices are scarce, which limits their use in OPAT. Therefore, we evaluated the stability of ampicillin in sodium chloride 0.9% at two different concentrations, 50 and 15 mg/mL, in an elastomeric infusion pump when stored in the refrigerator and subsequently in real-life conditions at two different temperatures, 25 and 32 °C, with and without the use of a cooling device. The 15 mg/mL ampicillin is stable for up to 72 h under refrigeration, allowing subsequent dosing at 25 °C for 24 h with and without a cooling device, but at 32 °C its concentration drops below 90% after 8 h. In contrast, 50 mg/mL ampicillin only remains stable for the first 24 h under refrigeration, and subsequent administration at room temperature is not possible, even with the use of a cooling system. Our data support that 15 mg/mL AMP is suitable for use in OPAT if the volume and rate of infusion are tailored to the dosage needs of antimicrobial treatments

    Cysteamine Eye Drops in Hyaluronic Acid Packaged in Innovative Single-Dose Systems: Stability and Ocular Biopermanence

    No full text
    Cystinosis is a rare genetic disorder characterized by the accumulation of cystine crystals in different tissues and organs causing, among other symptoms, severe ocular manifestations. Cysteamine eye drops are prepared in hospital pharmacy departments to facilitate access to treatment, for which vehicles that provide adequate biopermanence, as well as adaptable containers that maintain its stability, are required. Difficulties related to cysteamine preparation, as well as its tendency to oxidize to cystamine, show the importance of conducting rigorous galenic characterization studies. This work aims to develop and characterize an ophthalmic compounded formulation of cysteamine prepared with hyaluronic acid and packaged in innovative single-dose systems. For this task, the effect of different storage temperatures and the presence/absence of nitrogen on the physicochemical stability of the formulation and its packaging was studied in a scaled manner, until reaching the optimal storage conditions. The results showed that 0.55% cysteamine, prepared with hyaluronic acid and packaged in single-dose containers, is stable for 30 days when stored at −20 °C. In addition, opening vials every 4 h at room temperature after 30 days of freezing maintains the stability of the cysteamine formulation for up to 16 h. Moreover, ocular biopermanence studies were conducted using molecular imaging, concluding that the biopermanence offered by the vehicle is not affected by the freezing process, where a half-life of 31.11 min for a hyaluronic acid formulation stored for 30 days at −20 °C was obtained, compared with 14.63 min for 0.9% sodium chloride eye drops

    Development and Characterization of Inhaled Ethanol as a Novel Pharmacological Strategy Currently Evaluated in a Phase II Clinical Trial for Early-Stage SARS-CoV-2 Infection

    No full text
    Inhaled administration of ethanol in the early stages of COVID-19 would favor its location on the initial replication sites, being able to reduce the progression of the disease and improving its prognosis. Before evaluating the efficacy and safety of this novel therapeutic strategy in humans, its characterization is required. The developed 65° ethanol formulation is stable at room temperature and protected from light for 15 days, maintaining its physicochemical and microbiological properties. Two oxygen flows have been tested for its administration (2 and 3 L/min) using an automated headspace gas chromatographic analysis technique (HS-GC-MS), with that of 2 L/min being the most appropriate one, ensuring the inhalation of an ethanol daily dose of 33.6 ± 3.6 mg/min and achieving more stable concentrations during the entire treatment (45 min). Under these conditions of administration, the formulation has proven to be safe, based on histological studies of the respiratory tracts and lungs of rats. On the other hand, these results are accompanied by the first preclinical molecular imaging study with radiolabeled ethanol administered by this route. The current ethanol formulation has received approval from the Spanish Agency of Medicines and Medical Devices for a phase II clinical trial for early-stage COVID-19 patients, which is currently in the recruitment phase (ALCOVID-19; EudraCT number: 2020-001760-29)
    corecore