25 research outputs found

    "Argento Deaurato" or "Argento Biancheggiato"? A Rare and Interesting Case of Silver Background in Italian Painting of the XIII Century

    Get PDF
    The painting depicting the "Virgin with the Child and two angels" by a Tuscan anonymous artist of the XIII century, has raised great interest regarding the execution technique including the use of silver, applied on wood as a background. An in-depth investigation was carried out especially concerning the burnishing process of the silver leaves as well as a detailed inspection of the nature of the organic compounds over the metal leaf and the degradation products of the silver layer. To this aim, a multianalytical approach was used including UV–VIS microscopy along with an Ultra-High-Resolution Scanning Electron Microscopy (UHR-SEM), as well as Fourier Transform Infrared (FTIR), fluorescence and micro-Raman spectroscopies. As a result, the presence of an oil-resin varnish layer in the uppermost layer and a wax-protein layer between the varnish and the metal layer as well as the evidence that the silver leaf was applied with high accuracy directly to the preparation layer, were clearly demonstrated. Furthermore, degradation products of the silver leaf were identified as sulphides, chlorides, and oxides. The holistic approach herein adopted enabled a step forward in the knowledge of the 13th century silver leaf gilding technique, adding value to the originality of this artwork. In this respect, the scientific evidence led to the assumption that likely this painting originally showed a silver-colored background ("argento biancheggiato") as compared to the initial theory of a case of "argento deaurato"

    Ion-exchanged glass microrods for SERS detection of DNA

    Get PDF
    Different chemical or physical deposition processes have been previously proposed to equip surfaces with a layer of plasmonic NPs to produce effective SERS responses. Here, we present a SERS biosensor obtained by an ion-exchange process in soda-lime glass microrods for efficient DNA detection

    A SERS affinity bioassay based on ion-exchanged glass microrods

    Get PDF
    14noThe well-known enhancement effect of surface-enhanced Raman spectroscopy (SERS) is associated with the presence of metallic nanostructures at the substrate surface. Different bottom-up and top-down processes have been proposed to impart the substrate with such a nanostructured layer. The former approaches are low cost but may suffer from reusability and stability. The latter strategies are expensive, time consuming and require special equipment that complicate the fabrication process. Here, we present the possibility to obtain stable and reusable SERS substrates by a low-cost silver-sodium ion-exchange process in soda-lime glass microrods. The microrods were obtained by cutting the tip of the ion-exchanged soda-lime fiber, resulting in disks of about few millimeters in length and one hundred microns in diameter. A thermal annealing post-process was applied to trigger the reduction of Ag+ ions into nanoparticles (AgNPs) within the ion-exchanged glass microrods. Afterwards, ion-exchange and thermal treatments were carefully tuned to assure the presence of silver NPs exposed on the surface of the microrods, without using any chemical etching. An AFM analysis confirmed the presence of AgNPs with size of tens of nm on the surface of the fiber probe. A SERS affinity bioassay was developed on the probe with the final aim of detecting microRNA fragments acting as biomarkers of different diseases. Specifically a DNA hybridization assay was built up by anchoring a molecular beacon containing a Raman tag on the Ag surface via thiol chemistry. Initial SERS experiments confirmed the presence of the beacon on the NPs embedded on the microrods surface, as monitored by detecting main spectral bands ascribed to the oligonucleotide chain. Finally, the ability of the platform to interact with the target microRNA sequence was assessed. The analysis was repeated on a number of miRNA sequences differing from the target to evaluate the specificity of the proposed assay.openopenBerneschi, Simone; D'Andrea, Cristiano; Giannetti, Ambra; De Angelis, Marella; Banchelli, Martina; Barucci, Andrea; Boetti, Nadia Giovanna; Pelli, Stefano; Baldini, Francesco; Pini, Roberto; Janner, Davide; Pugliese, Diego; Milanese, Daniel; Matteini, PaoloBerneschi, Simone; D'Andrea, Cristiano; Giannetti, Ambra; De Angelis, Marella; Banchelli, Martina; Barucci, Andrea; Boetti, Nadia Giovanna; Pelli, Stefano; Baldini, Francesco; Pini, Roberto; Janner, Davide; Pugliese, Diego; Milanese, Daniel; Matteini, Paol

    Use, Attitudes and Knowledge of Complementary and Alternative Drugs (CADs) Among Pregnant Women: a Preliminary Survey in Tuscany

    Get PDF
    To explore pregnant women's use, attitudes, knowledge and beliefs of complementary and alternative drugs (CADs) defined as products manufactured from herbs or with a natural origin. A preliminary survey was conducted among 172 pregnant women in their third trimester of pregnancy, consecutively recruited in two obstetrical settings; 15 women were randomly selected to compute a test-to-retest analysis. Response rate was 87.2%. Test-to-retest analysis showed a questionnaire's reproducibility exceeding a K-value of 0.7 for all items. Mean age was 32.4 ± 0.4 years; most women were nulliparae (62.7%). The majority of subjects (68%) declared to have used one or more CADs during their lifetime; 48% of pregnant women reported taking at least one CAD previously and during the current pregnancy. Women's habitual use of CADs meant they were at higher risk of taking CADs also during pregnancy (adjusted odds ratio = 10.8; 95% confidence interval: 4.7–25.0). Moreover, 59.1% of the subjects were unable to correctly identify the type of CADs they were using. The majority of women resorted to gynecologists as the primary information source for CADs during pregnancy, while they mainly referred to herbalists when not pregnant. Habitual use of CADs seems to be a strong predictor for their ingestion also during pregnancy; in addition most subjects were unable to correctly identify the products they were taking. In the light of the scanty data concerning the safety of CADs during pregnancy, these preliminary results confirm the need to investigate thoroughly the situation of pregnant women and CADs consumption

    Chemical–physical analysis of a tartrate model compound for TACE inhibition

    No full text
    We have synthesized and done an extensive chemical–physical analysis of the behavior of a new compound, named MBET306, a synthetic precursor of the recently discovered tartrate-based inhibitors of the protein Tumor Necrosis factor-a Converting Enzyme (TACE). Experimental and theoretical data have shown that in water solution MBET306 is overwhelmingly found as a monoanion at physiological pH, in a conformation that differs substantially from that detected in the known co-crystal structures of MBET306 derivatives bound to TACE. The body of collected experimental and theoretical data indicates that the monoanionic species binds Zn(II) inducing a strong stabilization of the crystal-like arrangement of the central tartrate zinc-binding group, lending support for a two step TACE docking mechanism via a zinc-bound intermediate. The thorough chemical–physical characterization of the conformational behavior of free and zinc-bound MBET306 in water bulk solution opens new avenues for the rational drug design of tartrate-based highly specific TACE inhibitor

    Controlled graphene oxide assembly on silver nanocube monolayers for SERS detection: dependence on nanocube packing procedure

    No full text
    Hybrid graphene oxide/silver nanocubes (GO/AgNCs) arrays for surface-enhanced Raman spectroscopy (SERS) applications were prepared by means of two procedures differing for the method used in the assembly of the silver nanocubes onto the surface: Langmuir–Blodgett (LB) transfer and direct sequential physisorption of silver nanocubes (AgNCs). Adsorption of graphene oxide (GO) flakes on the AgNC assemblies obtained with both procedures was monitored by quartz crystal microbalance (QCM) technique as a function of GO bulk concentration. The experiment provided values of the adsorbed GO mass on the AgNC array and the GO saturation limit as well as the thickness and the viscoelastic properties of the GO film. Atomic force microscopy (AFM) measurements of the resulting samples revealed that a similar surface coverage was achieved with both procedures but with a different distribution of silver nanoparticles. In the GO covered LB film, the AgNC distribution is characterized by densely packed regions alternating with empty surface areas. On the other hand, AgNCs are more homogeneously dispersed over the entire sensor surface when the nanocubes spontaneously adsorb from solution. In this case, the assembly results in less-packed silver nanostructures with higher inter-cube distance. For the two assembled substrates, AFM of silver nanocubes layers fully covered with GO revealed the presence of a homogeneous, flexible and smooth GO sheet folding over the silver nanocubes and extending onto the bare surface. Preliminary SERS experiments on adenine showed a higher SERS enhancement factor for GO on Langmuir–Blodgett films of AgNCs with respect to bare AgNC systems. Conversely, poor SERS enhancement for adenine resulted for GO-covered AgNCs obtained by spontaneous adsorption. This indicated that the assembly and packing of AgNCs obtained in this way, although more homogeneous over the substrate surface, is not as effective for SERS analysis
    corecore