386 research outputs found

    Testicular translocator protein expression is differentially altered by synthetic cannabinoid HU210 in adult and adolescent Rats

    Get PDF
    Objective: The translocator protein (TSPO) has been implicated in numerous functions including steroid production and regulation of stress and anxiety. Cannabinoids have been shown to reduce plasma testosterone levels and alter anxiety levels. The aim of the present study was to determine whether the synthetic cannabinoid HU210 is able to regulate TSPO expression in several peripheral organs. Methods: HU210 (100 μg/kg) was administered intraperitoneally to both adult and adolescent male ratsfor 14 days. TSPO receptor expression in several organs, including the liver, spleen, kidneys and testes, was quantified by membrane receptor binding using the selective radiolig and, PK11195. In cases where receptor binding data indicated significant cannabinoid-induced differences, further RT-qPCR was carried out to determine the transcriptional regulation of the TSPO gene. Additionally, film-autography was used to identify potential changes in the spatial distribution of the TSPO tissue binding sites. Results: Results indicate that HU210 induces significant reductions in testicular TSPO expression in adult but not adolescent rats. No changes were found in other organs examined. These results are consistent with the previously observed effects of cannabinoids on testosterone production and a presumed role for TSPO in steroidogenesis. Conclusions: Overall, these results suggest that cannabinoids may alter testosterone production by altering the expression of testicular TSPO and that the alteration of TSPO occurs in an age-dependent manner.© 2014 Chan RHY, et al

    Extracellular ATP activates a cation conductance and a K+ conductance in cultured microglial cells from mouse brain

    Get PDF
    Microglial cells have important functions during regenerative processes after brain injury. It is well established that they rapidly respond to damage to the brain tissue. Stages of activation are associated with changes of cellular properties such as proliferation rate or expression of surface antigens. Yet, nothing is known about signal substances leading to the rapid changes of membrane properties, which may be required to initiate the transition from one cell stage into another. From our present study, using the patch-clamp technique, we report that cultured microglial cells obtained from mouse or rat brain respond to extracellularly applied ATP with the activation of a cation conductance. Additionally, in the majority of cells an outwardly directed K+ conductance was activated with some delay. Since ADP, AMP, and adenosine (in descending order) were less potent or ineffective in inducing the cation conductance, the involvement of a P2 purinergic receptor is proposed. The receptor activation is accompanied by an increase of cytosolic Ca2+ as determined by a fura-2-based Ca(2+)-imaging system. This ATP receptor could enable microglial cells to respond to transmitter release from nerve endings with ATP as a transmitter or cotransmitter or to the death of cells with resulting leakage of ATP

    The 18 kDa translocator protein, microglia and neuroinflammation

    Get PDF
    The 18 kDa translocator protein (TSPO), previously known as the peripheral benzodiazepine receptor, is expressed in the injured brain. It has become known as an imaging marker of “neuroinflammation” indicating active disease, and is best interpreted as a nondiagnostic biomarker and disease staging tool that refers to histopathology rather than disease etiology. The therapeutic potential of TSPO as a drug target is mostly based on the understanding that it is an outer mitochondrial membrane protein required for the translocation of cholesterol, which thus regulates the rate of steroid synthesis. This pivotal role together with the evolutionary conservation of TSPO has underpinned the belief that any loss or mutation of TSPO should be associated with significant physiological deficits or be outright incompatible with life. However, against prediction, full Tspo knockout mice are viable and across their lifespan do not show the phenotype expected if cholesterol transport and steroid synthesis were significantly impaired. Thus, the “translocation” function of TSPO remains to be better substantiated. Here, we discuss the literature before and after the introduction of the new nomenclature for TSPO and review some of the newer findings. In light of the controversy surrounding the function of TSPO, we emphasize the continued importance of identifying compounds with confirmed selectivity and suggest that TSPO expression is analyzed within specific disease contexts rather than merely equated with the reified concept of “neuroinflammation.” © 2014 The Authors© 2014 The Authors. Brain Pathology published by John Wiley & Sons Ltd on behalf of International Society of Neuropathology. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited

    The topobiology of chemical elements in seabird feathers

    Get PDF
    The highly organized morphogenesis of bird feathers holds important phylo- and ontogenetic information on the evolution of birds, organogenesis, tissue regeneration, and the health status of individual animals. Altered topobiological patterns are regularly used as retrospective evidence for disturbed developmental trajectories due to the past exposure to environmental stressors. Using the most advanced high-resolution (5-70 μm) X-ray fluorescence microscopy (XFM), we describe in the feathers from three species of Procellariiformes hitherto unknown, depositions of elements (Zn, Ca, Br, Cu, Fe) that are independent of pigmentation or any underlying variation in density or polymer structure. In the case of Zn, the pattern across several species of Procellariiformes, but not other species, consisted of highly regular bands of Zn numbering 30-32, which may reflect the estimated number of days of active feather growth or the duration of the moult period. Thus, speculatively, the highly consistent Zn pattern might be the result of a so far unknown diurnal systemic regulation rather than local heterogeneity amongst the follicular stem cells

    PET imaging of putative microglial activation in individuals at ultra-high risk for psychosis, recently diagnosed and chronically ill with schizophrenia

    Get PDF
    We examined putative microglial activation as a function of illness course in schizophrenia. Microglial activity was quantified using [11C](R)-(1-[2-chrorophynyl]-N-methyl-N-[1-methylpropyl]-3 isoquinoline carboxamide (11C-(R)-PK11195) positron emission tomography (PET) in: (i) 10 individuals at ultra-high risk (UHR) of psychosis; (ii) 18 patients recently diagnosed with schizophrenia; (iii) 15 patients chronically ill with schizophrenia; and, (iv) 27 age-matched healthy controls. Regional-binding potential (BPND) was calculated using the simplified reference-tissue model with four alternative reference inputs. The UHR, recent-onset and chronic patient groups were compared to age-matched healthy control groups to examine between-group BPND differences in 6 regions: dorsal frontal, orbital frontal, anterior cingulate, medial temporal, thalamus and insula. Correlation analysis tested for BPND associations with gray matter volume, peripheral cytokines and clinical variables. The null hypothesis of equality in BPND between patients (UHR, recent-onset and chronic) and respective healthy control groups (younger and older) was not rejected for any group comparison or region. Across all subjects, BPND was positively correlated to age in the thalamus (r=0.43, P=0.008, false discovery rate). No correlations with regional gray matter, peripheral cytokine levels or clinical symptoms were detected. We therefore found no evidence of microglial activation in groups of individuals at high risk, recently diagnosed or chronically ill with schizophrenia. While the possibility of 11C-(R)-PK11195-binding differences in certain patient subgroups remains, the patient cohorts in our study, who also displayed normal peripheral cytokine profiles, do not substantiate the assumption of microglial activation in schizophrenia as a regular and defining feature, as measured by 11C-(R)-PK11195 BPND.M A Di Biase, A Zalesky, G O'keefe, L Laskaris, B T Baune, C S Weickert, J Olver, P D McGorry, G P Amminger, B Nelson, A M Scott, I Hickie, R Banati, F Turkheimer, M Yaqub, I P Everall, C Pantelis and V Crople

    Research for food and health in Europe: themes, needs and proposals

    Get PDF
    Background Diet, in addition to tobacco, alcohol and physical exercise, is a major factor contributing to chronic diseases in Europe. There is a pressing need for multidisciplinary research to promote healthier food choices and better diets. Food and Health Research in Europe (FAHRE) is a collaborative project commissioned by the European Union. Among its tasks is the description of national research systems for food and health and, in work reported here, the identification of strengths and gaps in the European research base. Methods A typology of nine research themes was developed, spanning food, society, health and research structures. Experts were selected through the FAHRE partners, with balance for individual characteristics, and reported using a standardised template. Results Countries usually commission research on food, and on health, separately: few countries have combined research strategies or programmes. Food and health are also strongly independent fields within the European Commission's research programmes. Research programmes have supported food and bio-technology, food safety, epidemiological research, and nutritional surveillance; but there has been less research into personal behaviour and very little on environmental influences on food choices - in the retail and marketing industries, policy, and regulation. The research is mainly sited within universities and research institutes: there is relatively little published research contribution from industry. Discussion National food policies, based on epidemiological evidence and endorsed by the World Health Organisation, recommend major changes in food intake to meet the challenge of chronic diseases. Biomedical and biotechnology research, in areas such as 'nutrio-genomics', 'individualised' diets, 'functional' foods and 'nutri-pharmaceuticals' appear likely to yield less health benefit, and less return on public investment, than research on population-level interventions to influence dietary patterns: for example policies to reduce population consumption of trans fats, saturated fats, salt and energy density. Research should now address how macro-diets, rather than micro-nutritional content, can be improved for beneficial impacts on health, and should evaluate the impact of market changes and policy interventions, including regulation, to improve public health. Conclusions European and national research on food and health should have social as well as commercial benefits. Strategies and policies should be developed between ministries of health and national research funding agencies. Collaboration between member states in the European Union can yield better innovation and greater competitive advantage

    [11C]-DPA-713 and [18F]-DPA-714 as New PET Tracers for TSPO: A Comparison with [11C]-(R)-PK11195 in a Rat Model of Herpes Encephalitis

    Get PDF
    Background: Activation of microglia cells plays an important role in neurological diseases. Positron emission tomography (PET) with [C-11]-(R)-PK11195 has already been used to visualize activated microglia cells in neurological diseases. However, [C-11]-(R)-PK11195 may not possess the required sensitivity to visualize mild neuroinflammation. In this study, we evaluated the PET tracers [C-11]-DPA-713 and [F-18]-DPA-714 as agents for imaging of activated microglia in a rat model of herpes encephalitis. Materials and Methods: Rats were intranasally inoculated with HSV-1. On day 6 or 7 after inoculation, small animal PET studies were performed to compare [C-11]-(R)-PK11195, [C-11]-DPA-713, and [F-18]-DPA-714. Results: Uptake of [C-11]-DPA-713 in infected brain areas was comparable to that of [C-11]-(R)-PK11195, but [C-11]-DPA-713 showed lower non-specific binding. Non-specific uptake of [F-18]-DPA-714 was lower than that of [C-11]-(R)-PK11195. In the infected brain, total [F-18]-DPA-714 uptake was lower than that of [C-11]-(R)-PK11195, with comparable specific uptake. Conclusions: [C-11]-DPA-713 may be more suitable for visualizing mild inflammation than [C-11]-(R)-PK11195. In addition, the fact that [F-18]-DPA-714 is an agonist PET tracer opens new possibilities to evaluate different aspects of neuroinflammation. Therefore, both tracers warrant further investigation in animal models and in a clinical setting

    COX-2, CB2 and P2X7-immunoreactivities are increased in activated microglial cells/macrophages of multiple sclerosis and amyotrophic lateral sclerosis spinal cord

    Get PDF
    BACKGROUND: While multiple sclerosis (MS) and amyotrophic lateral sclerosis (ALS) are primarily inflammatory and degenerative disorders respectively, there is increasing evidence for shared cellular mechanisms that may affect disease progression, particularly glial responses. Cyclooxygenase 2 (COX-2) inhibition prolongs survival and cannabinoids ameliorate progression of clinical disease in animal models of ALS and MS respectively, but the mechanism is uncertain. Therefore, three key molecules known to be expressed in activated microglial cells/macrophages, COX-2, CB2 and P2X7, which plays a role in inflammatory cascades, were studied in MS and ALS post-mortem human spinal cord. METHODS: Frozen human post mortem spinal cord specimens, controls (n = 12), ALS (n = 9) and MS (n = 19), were available for study by immunocytochemistry and Western blotting, using specific antibodies to COX-2, CB2 and P2X7, and markers of microglial cells/macrophages (CD 68, ferritin). In addition, autoradiography for peripheral benzodiazepine binding sites was performed on some spinal cord sections using [3H] (R)-PK11195, a marker of activated microglial cells/macrophages. Results of immunostaining and Western blotting were quantified by computerized image and optical density analysis respectively. RESULTS: In control spinal cord, few small microglial cells/macrophages-like COX-2-immunoreactive cells, mostly bipolar with short processes, were scattered throughout the tissue, whilst MS and ALS specimens had significantly greater density of such cells with longer processes in affected regions, by image analysis. Inflammatory cell marker CD68-immunoreactivity, [3H] (R)-PK11195 autoradiography, and double-staining against ferritin confirmed increased production of COX-2 by activated microglial cells/macrophages. An expected 70-kDa band was seen by Western blotting which was significantly increased in MS spinal cord. There was good correlation between the COX-2 immunostaining and optical density of the COX-2 70-kDa band in the MS group (r = 0.89, P = 0.0011, n = 10). MS and ALS specimens also had significantly greater density of P2X7 and CB2-immunoreactive microglial cells/macrophages in affected regions. CONCLUSION: It is hypothesized that the known increase of lesion-associated extracellular ATP contributes via P2X7 activation to release IL-1 beta which in turn induces COX-2 and downstream pathogenic mediators. Selective CNS-penetrant COX-2 and P2X7 inhibitors and CB2 specific agonists deserve evaluation in the progression of MS and ALS
    corecore