12 research outputs found

    Identification of a de novo LRP1 mutation in a Saudi family with Tetralogy of Fallot.

    No full text
    Tetralogy of Fallot (TOF) is a rare, complex congenital heart defect caused by genetic and environmental interactions that results in abnormal heart development during the early stages of pregnancy. Genetic basis of TOF in Saudi populations is not yet studied. Therefore, the objective of this study is to screen for the molecular defects causing TOF in Saudi patients. A family with non-syndromic TOF was recruited from the Western region of Saudi Arabia. Whole exome sequencing (WES) was performed on the proband and her parents. The identified candidate variant was verified by sanger sequencing. Also, different computational biology tools were used to figure out how candidate variants affect the structure and function of candidate protein involved in TOF. A novel heterozygous de novo mutation in LRP1 (p. G3311D) gene was identified in the index case. Also, this variant was absent in the in-house exome sequencing data of 80 healthy Saudi individuals. This variant was predicted to be likely pathogenic, as it negatively affects the biophysical chemical properties and stability of the protein. Furthermore, functional biology data from knock out mouse models confirms that molecular defects in LRP1 gene leads to cardiac defects and lethality. This variant was not previously reported in both Arab and global population genetic databases. The findings in this study postulate that the LRP1 variant has a role in TOF pathogenesis and facilitate accurate diagnosis as well as the understanding of underlying molecular mechanisms and pathophysiology of the disease

    Azadirachtin Interacts with Retinoic Acid Receptors and Inhibits Retinoic Acid-mediated Biological Responses*

    No full text
    Considering the role of retinoids in regulation of more than 500 genes involved in cell cycle and growth arrest, a detailed understanding of the mechanism and its regulation is useful for therapy. The extract of the medicinal plant Neem (Azadirachta indica) is used against several ailments especially for anti-inflammatory, anti-itching, spermicidal, anticancer, and insecticidal activities. In this report we prove the detailed mechanism on the regulation of retinoic acid-mediated cell signaling by azadirachtin, active components of neem extract. Azadirachtin repressed all trans-retinoic acid (ATRA)-mediated nuclear transcription factor κB (NF-κB) activation, not the DNA binding but the NF-κB-dependent gene expression. It did not inhibit IκBα degradation, IκBα kinase activity, or p65 phosphorylation and its nuclear translocation but inhibited NF-κB-dependent reporter gene expression. Azadirachtin inhibited TRAF6-mediated, but not TRAF2-mediated NF-κB activation. It inhibited ATRA-induced Sp1 and CREB (cAMP-response element-binding protein) DNA binding. Azadirachtin inhibited ATRA binding with retinoid receptors, which is supported by biochemical and in silico evidences. Azadirachtin showed strong interaction with retinoid receptors. It suppressed ATRA-mediated removal of retinoid receptors, bound with DNA by inhibiting ATRA binding to its receptors. Overall, our data suggest that azadirachtin interacts with retinoic acid receptors and suppresses ATRA binding, inhibits falling off the receptors, and activates transcription factors like CREB, Sp1, NF-κB, etc. Thus, azadirachtin exerts anti-inflammatory and anti-metastatic responses by a novel pathway that would be beneficial for further anti-inflammatory and anti-cancer therapies
    corecore