1,902 research outputs found

    Flexural fatigue of hollow rolling elements

    Get PDF
    Hollow cylindrical bars were tested in the rolling-contact fatigue tester to determine the effects of material and outside diameter to inside diameter (OD/ID) ratios of 2.0, 1.6, 1.4, and 1.2 on fatigue failure mode and subsequent failure propagation. The range of applied loads with these OD/ID ratios resulted in maximum tangential tensile stresses ranging from 165 to 655 megapascals (24,000 to 95,000 psi) at the bore surface. Flexural failures of the hollow test bars occurred when this bore stress was 490 megapascals (71,000 psi) or greater with AISI 52100 hollow bars and 338 megapascals (49,000 psi) or greater with AISI M-50 hollow bars. Good correlation was obtained in relating the failures of these hollow bars with flexural failures of drilled balls from previously published full scale bearing tests

    Separation of biological materials in microgravity

    Get PDF
    Partition in aqueous two phase polymer systems is a potentially useful procedure in downstream processing of both molecular and particulate biomaterials. The potential efficiency of the process for particle and cell isolations is much higher than the useful levels already achieved. Space provides a unique environment in which to test the hypothesis that convection and settling phenomena degrade the performance of the partition process. The initial space experiment in a series of tests of this hypothesis is described

    Demixing kinetics of phase separated polymer solutions in microgravity

    Get PDF
    Phase separated solutions of two neutral polymers in buffer provide a useful and versatile medium for the partition separation of biological cells. However, the efficiency of such separations is orders of magnitude lower than the thermodynamic limit. To test the hypothesis that this inefficiency is at least partially due to the convection and sedimentation that occur during the gravity driven demixing that follows introduction of cells to the systems, a series of experiments were begun aimed at performing cell partition in a low g environment. Demixing of isopycnic three polymer solvent systems was studied, experiments were performed on KC-135 aircraft and one shuttle middeck experiment was completed. Analysis of the results of these experiments and comparisons with the predictions of scaling relations for the dependence of phase domain size on time, derived for a number of possible demixing mechanisms, are presented

    Demixing of aqueous polymer two-phase systems in low gravity

    Get PDF
    When polymers such as dextran and poly(ethylene glycol) are mixed in aqueous solution biphasic systems often form. On Earth the emulsion formed by mixing the phases rapidly demixes because of phase density differences. Biological materials can be purified by selective partitioning between the phases. In the case of cells and other particulates the efficiency of these separations appears to be somewhat compromised by the demixing process. To modify this process and to evaluate the potential of two-phase partitioning in space, experiments on the effects of gravity on phase emulsion demixing were undertaken. The behavior of phase systems with essentially identical phase densities was studied at one-g and during low-g parabolic aircraft maneuvers. The results indicate the demixing can occur rather rapidly in space, although more slowly than on Earth. The demixing process was examined from a theoretical standpoint by applying the theory of Ostwald ripening. This theory predicts demizing rates many orders of magnitude lower than observed. Other possible demixing mechanisms are considered

    Hydrodynamical assessment of 200 AGeV collisions

    Full text link
    We are analyzing the hydrodynamics of 200 A GeV S+S collisions using a new approach which tries to quantify the uncertainties arising from the specific implementation of the hydrodynamical model. Based on a previous phenomenological analysis we use the global hydrodynamics model to show that the amount of initial flow, or initial energy density, cannot be determined from the hadronic momentum spectra. We additionally find that almost always a sizeable transverse flow deve- lops, which causes the system to freeze out, thereby limiting the flow velocity in itself. This freeze-out dominance in turn makes a distinction between a plasma and a hadron resonance gas equation of state very difficult, whereas a pure pion gas can easily be ruled out from present data. To complete the picture we also analyze particle multiplicity data, which suggest that chemical equilibrium is not reached with respect to the strange particles. However, the over- population of pions seems to be at most moderate, with a pion chemical potential far away from the Bose divergence.Comment: 19 pages, 11 figs in separate uuencoded file, for LateX, epsf.tex, dvips, TPR-94-5 and BNL-(no number yet

    Signaling in Secret: Pay-for-Performance and the Incentive and Sorting Effects of Pay Secrecy

    Get PDF
    Key Findings: Pay secrecy adversely impacts individual task performance because it weakens the perception that an increase in performance will be accompanied by increase in pay; Pay secrecy is associated with a decrease in employee performance and retention in pay-for-performance systems, which measure performance using relative (i.e., peer-ranked) criteria rather than an absolute scale (see Figure 2 on page 5); High performing employees tend to be most sensitive to negative pay-for- performance perceptions; There are many signals embedded within HR policies and practices, which can influence employees’ perception of workplace uncertainty/inequity and impact their performance and turnover intentions; and When pay transparency is impractical, organizations may benefit from introducing partial pay openness to mitigate these effects on employee performance and retention

    Thermal phenomenology of hadrons from 200 AGeV S+S collisions

    Full text link
    We develop a complete and consistent description for the hadron spectra from heavy ion collisions in terms of a few collective variables, in particular temperature, longitudinal and transverse flow. To achieve a meaningful comparison with presently available data, we also include the resonance decays into our picture. To disentangle the influences of transverse flow and resonance decays in the mTm_T-spectra, we analyse in detail the shape of the mTm_T-spectra.Comment: 31 pages, 13 figs in seperate uuencoded file, for LaTeX, epsf.sty and dvips, TPR-93-16 and BNL-(no number yet

    Constraints on new interactions from neutron scattering experiments

    Full text link
    Constraints for the constants of hypothetical Yukawa-type corrections to the Newtonian gravitational potential are obtained from analysis of neutron scattering experiments. Restrictions are obtained for the interaction range between 10^{-12} and 10^{-7} cm, where Casimir force experiments and atomic force microscopy are not sensitive. Experimental limits are obtained also for non-electromagnetic inverse power law neutron-nucleus potential. Some possibilities are discussed to strengthen these constraints.Comment: 18 pages, 3 figure

    The Presampler for the Forward and Rear Calorimeter in the ZEUS Detector

    Get PDF
    The ZEUS detector at HERA has been supplemented with a presampler detector in front of the forward and rear calorimeters. It consists of a segmented scintillator array read out with wavelength-shifting fibers. We discuss its desi gn, construction and performance. Test beam data obtained with a prototype presampler and the ZEUS prototype calorimeter demonstrate the main function of this detector, i.e. the correction for the energy lost by an electron interacting in inactive material in front of the calorimeter.Comment: 20 pages including 16 figure

    Power transmission by laser beam from lunar-synchronous satellite

    Get PDF
    The possibility of beaming power from synchronous lunar orbits (the L1 and L2 Lagrange points) to a manned long-range lunar rover is addressed. The rover and two versions of a satellite system (one powered by a nuclear reactor, the other by photovoltaics) are described in terms of their masses, geometries, power needs, missions, and technological capabilities. Laser beam power is generated by a laser diode array in the satellite and converted to 30 kW of electrical power at the rover. Present technological capabilities, with some extrapolation to near future capabilities, are used in the descriptions. The advantages of the two satellite/rover systems over other such systems and over rovers with onboard power are discussed along with the possibility of enabling other missions
    corecore