7 research outputs found

    MCNP calculations of neutron emission anisotropy caused by the GIT-12 hardware

    No full text
    The MCNP6 and MCNPX calculations for the GIT-12 device in Tomsk were performed to determine the influence of the gas-puff hardware on the neutron emission anisotropy and the neutron scattering rate. A monoenergetic 2.45 MeV neutron source and F1 and F6 tallies were declared in the simulation input. A comparison between MCNP results and the measured data was made. Differences between MCNPX and MCNP6 output data were investigated. In the experiment, two nTOF scintillation detectors with the Bicron BC-408 scintillator were used to measure the neutron waveform. Four bubble BD-PND detectors were used to estimate the amount of neutrons in different places around the neutron source

    Evolution of the small ball-like structures in the plasma focus discharge

    No full text
    The experiments were carried out in the PF-1000 plasma-focus device at the maximum current reaching about 2 MA, at the deuterium or neon filling and with deuterium injected from a gas-puff nozzle placed on the axis of the anode face. Ball-like structures of diameters of 1-12 mm were identified in interferometric and XUV pinhole camera frames. We made the statistical description of their parameters. A lifetime of the ball-like structures was in the range from 30 to 210 ns, and in some cases even more. These structures appeared mostly at the surface of the imploding plasma shell and they did not change their position in relation to the anode end. During the evolution of these structures, interferometric fringes were observed near the surfaces of the structures only, and their internal parts were initially chaotic (without noticeable) fringes. Subsequently the number of interferometric fringes increased (the internal ‘chaotic’ area was filled with fringes too) and later on it decreased. The radii of the ball-like structures were mostly increasing during their existence. The maximum electron density reached the value of 1024 to 1025 m-3. The ball-like structures decayed by absorption inside the expanded pinch column and/or gradually expired in rare plasma outside of the dense plasma column

    Temporal distribution of linear densities of the plasma column in a plasma focus discharge

    No full text
    Experiments were carried out on the PF-1000 plasma focus device, with a deuterium filling and with deuterium puffing from a gas-puff nozzle placed on the axis of the anode face. The current was reaching 2 MA. 15 interferometric frames from one shot were recorded with a Nd:YLF laser and a Mach–Zehnder interferometer, with 10–20 ns delay between the frames. As a result, the temporal and spatial distribution of the linear densities and the radial and axial velocities of the moving of plasma in the dense plasma column could be estimated
    corecore